This paper proposes a novel model-based policy gradient algorithm for tracking dynamic targets using a mobile robot, equipped with an onboard sensor with limited field of view. The task is to obtain a continuous control policy for the mobile robot to collect sensor measurements that reduce uncertainty in the target states, measured by the target distribution entropy. We design a neural network control policy with the robot $SE(3)$ pose and the mean vector and information matrix of the joint target distribution as inputs and attention layers to handle variable numbers of targets. We also derive the gradient of the target entropy with respect to the network parameters explicitly, allowing efficient model-based policy gradient optimization.
translated by 谷歌翻译
本文提出了一种使用信息理论成本来学习有效地标本地化和探索的连续控制政策的方法。我们考虑一个移动机器人在有限的传感范围内检测地标,并解决学习控制政策的问题,该控制政策最大程度地提高了地标状态与传感器观察之间的相互信息。我们采用Kalman过滤器将地标州的部分可观察到的问题转换为马尔可夫决策过程(MDP),这是一个可区分的视野来塑造奖励,以及基于注意力的神经网络来代表控制策略。除了具有里程碑意义的定位外,该方法通过主动容积映射进一步统一,以促进勘探。与基准方法相比,在几个模拟地标本地化任务中证明了该性能。
translated by 谷歌翻译
我们开发了一个多功能辅助救援学习(MARL)方法,以了解目标跟踪的可扩展控制策略。我们的方法可以处理任意数量的追求者和目标;我们显示出现的任务,该任务包括高达1000追踪跟踪1000个目标。我们使用分散的部分可观察的马尔可夫决策过程框架来模拟追求者作为接受偏见观察(范围和轴承)的代理,了解使用固定的未知政策的目标。注意机制用于参数化代理的价值函数;这种机制允许我们处理任意数量的目标。熵 - 正规的脱助政策RL方法用于培训随机政策,我们讨论如何在追求者之间实现对冲行为,尽管有完全分散的控制执行,但仍然导致合作较弱的合作形式。我们进一步开发了一个掩蔽启发式,允许训练较少的问题,少量追求目标和在更大的问题上执行。进行彻底的仿真实验,消融研究和对现有技术算法的比较,以研究对不同数量的代理和目标性能的方法和鲁棒性的可扩展性。
translated by 谷歌翻译
主动同时定位和映射(SLAM)是规划和控制机器人运动以构建周围环境中最准确,最完整的模型的问题。自从三十多年前出现了积极感知的第一项基础工作以来,该领域在不同科学社区中受到了越来越多的关注。这带来了许多不同的方法和表述,并回顾了当前趋势,对于新的和经验丰富的研究人员来说都是非常有价值的。在这项工作中,我们在主动大满贯中调查了最先进的工作,并深入研究了仍然需要注意的公开挑战以满足现代应用程序的需求。为了实现现实世界的部署。在提供了历史观点之后,我们提出了一个统一的问题制定并审查经典解决方案方案,该方案将问题分解为三个阶段,以识别,选择和执行潜在的导航措施。然后,我们分析替代方法,包括基于深入强化学习的信念空间规划和现代技术,以及审查有关多机器人协调的相关工作。该手稿以讨论新的研究方向的讨论,解决可再现的研究,主动的空间感知和实际应用,以及其他主题。
translated by 谷歌翻译
策略搜索和模型预测控制〜(MPC)是机器人控制的两个不同范式:策略搜索具有使用经验丰富的数据自动学习复杂策略的强度,而MPC可以使用模型和轨迹优化提供最佳控制性能。开放的研究问题是如何利用并结合两种方法的优势。在这项工作中,我们通过使用策略搜索自动选择MPC的高级决策变量提供答案,这导致了一种新的策略搜索 - 用于模型预测控制框架。具体地,我们将MPC作为参数化控制器配制,其中难以优化的决策变量表示为高级策略。这种制定允许以自我监督的方式优化政策。我们通过专注于敏捷无人机飞行中的具有挑战性的问题来验证这一框架:通过快速的盖茨飞行四轮车。实验表明,我们的控制器在模拟和现实世界中实现了鲁棒和实时的控制性能。拟议的框架提供了合并学习和控制的新视角。
translated by 谷歌翻译
这项工作研究了图像目标导航问题,需要通过真正拥挤的环境引导具有嘈杂传感器和控制的机器人。最近的富有成效的方法依赖于深度加强学习,并学习模拟环境中的导航政策,这些环境比真实环境更简单。直接将这些训练有素的策略转移到真正的环境可能非常具有挑战性甚至危险。我们用由四个解耦模块组成的分层导航方法来解决这个问题。第一模块在机器人导航期间维护障碍物映射。第二个将定期预测实时地图上的长期目标。第三个计划碰撞命令集以导航到长期目标,而最终模块将机器人正确靠近目标图像。四个模块是单独开发的,以适应真实拥挤的情景中的图像目标导航。此外,分层分解对导航目标规划,碰撞避免和导航结束预测的学习进行了解耦,这在导航训练期间减少了搜索空间,并有助于改善以前看不见的真实场景的概括。我们通过移动机器人评估模拟器和现实世界中的方法。结果表明,我们的方法优于多种导航基线,可以在这些方案中成功实现导航任务。
translated by 谷歌翻译
近年来,太空中出现了不合作的物体,例如失败的卫星和太空垃圾。这些对象通常由自由浮动双臂空间操纵器操作或收集。由于消除了建模和手动参数调整的困难,强化学习(RL)方法在空间操纵器的轨迹计划中表现出了更有希望的标志。尽管以前的研究证明了它们的有效性,但不能应用于跟踪旋转未知(非合作对象)的动态靶标。在本文中,我们提出了一个学习系统,用于将自由浮动双臂空间操纵器(FFDASM)的运动计划朝向非合作对象。具体而言,我们的方法由两个模块组成。模块I意识到了大型目标空间内两个最终效应的多目标轨迹计划。接下来,模块II将非合件对象的点云作为输入来估计运动属性,然后可以预测目标点在非合作对象上的位置。我们利用模块I和模块II的组合来成功地跟踪具有未知规律性的旋转对象上的目标点。此外,实验还证明了我们学习系统的可扩展性和概括。
translated by 谷歌翻译
In this paper, we consider the problem where a drone has to collect semantic information to classify multiple moving targets. In particular, we address the challenge of computing control inputs that move the drone to informative viewpoints, position and orientation, when the information is extracted using a "black-box" classifier, e.g., a deep learning neural network. These algorithms typically lack of analytical relationships between the viewpoints and their associated outputs, preventing their use in information-gathering schemes. To fill this gap, we propose a novel attention-based architecture, trained via Reinforcement Learning (RL), that outputs the next viewpoint for the drone favoring the acquisition of evidence from as many unclassified targets as possible while reasoning about their movement, orientation, and occlusions. Then, we use a low-level MPC controller to move the drone to the desired viewpoint taking into account its actual dynamics. We show that our approach not only outperforms a variety of baselines but also generalizes to scenarios unseen during training. Additionally, we show that the network scales to large numbers of targets and generalizes well to different movement dynamics of the targets.
translated by 谷歌翻译
在执行视觉伺服或对象跟踪任务时,有效的传感器规划对于保持目标的目标是必不可少的,或者在缺失时重新定位它们。特别是,当处理从传感器的视野中缺少的已知目标时,我们建议使用与上下文信息相关的先验知识来估计其可能的位置。为此,本研究提出了一种动态贝叶斯网络,它使用上下文信息来有效地搜索目标。 Monte Carlo颗粒滤波器用于近似目标状态的后验概率,从中定义不确定性。我们通过信息理论形式主义定义机器人的实用程序函数,因为寻求最佳动作减少了任务的不确定性,提示机器人代理商调查最可能存在的目标的位置。使用上下文状态模型,我们使用部分可观察的Markov决策过程设计代理的高级决策框架。根据通过顺序观察的基础上下文的估计信仰状态,决定了机器人的导航行动进行探索性和检测任务。通过使用这种多模态上下文模型,我们的代理可以有效处理基本动态事件,例如妨碍目标或从视野中的缺失。我们实时实施并展示移动机器人的这些功能。
translated by 谷歌翻译
有效推论是一种数学框架,它起源于计算神经科学,作为大脑如何实现动作,感知和学习的理论。最近,已被证明是在不确定性下存在国家估算和控制问题的有希望的方法,以及一般的机器人和人工代理人的目标驱动行为的基础。在这里,我们审查了最先进的理论和对国家估计,控制,规划和学习的积极推断的实现;描述当前的成就,特别关注机器人。我们展示了相关实验,以适应,泛化和稳健性而言说明其潜力。此外,我们将这种方法与其他框架联系起来,并讨论其预期的利益和挑战:使用变分贝叶斯推理具有功能生物合理性的统一框架。
translated by 谷歌翻译
本文提出了一种基于强化学习的导航方法,在其中我们将占用观测定义为运动原始启发式评估,而不是使用原始传感器数据。我们的方法可以将多传感器融合生成的占用数据快速映射到3D工作区中的轨迹值中。计算有效的轨迹评估允许对动作空间进行密集采样。我们利用不同数据结构中的占用观测来分析其对培训过程和导航性能的影响。我们在基于物理的仿真环境(包括静态和动态障碍)中对两个不同机器人进行训练和测试。我们通过最先进方法的其他常规数据结构对我们的占用表示进行基准测试。在动态环境中,通过物理机器人成功验证了训练有素的导航政策。结果表明,与其他占用表示相比,我们的方法不仅减少了所需的训练时间,还可以改善导航性能。我们的工作和所有相关信息的开源实现可从\ url {https://github.com/river-lab/tentabot}获得。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
近年来,研究人员委托机器人和无人驾驶汽车(UAV)团队委托进行准确的在线野火覆盖范围和跟踪。迄今为止,大多数先前的工作都集中在此类多机器人系统的协调和控制上,但尚未赋予这些无人机团队对火的轨道(即位置和传播动态)进行推理的能力,以提供性能保证时间范围。在空中野火监测的问题上,我们提出了一个预测框架,该框架使多UAV团队的合作能够与概率性能保证一起进行协作现场覆盖和火灾跟踪。我们的方法使无人机能够推断出潜在的火灾传播动态,以在安全至关重要的条件下进行时间扩展的协调。我们得出了一组新颖的,分析的时间和跟踪纠纷界限,以使无人机团队根据特定于案例的估计状态分发有限的资源并覆盖整个火灾区域,并提供概率性能保证。我们的结果不仅限于空中野火监测案例研究,而且通常适用于搜索和救援,目标跟踪和边境巡逻等问题。我们在模拟中评估了我们的方法,并在物理多机器人测试台上提供了建议的框架,以说明真实的机器人动态和限制。我们的定量评估验证了我们的方法的性能,分别比基于最新的模型和强化学习基准分别累积了7.5倍和9.0倍的跟踪误差。
translated by 谷歌翻译
This article presents a novel review of Active SLAM (A-SLAM) research conducted in the last decade. We discuss the formulation, application, and methodology applied in A-SLAM for trajectory generation and control action selection using information theory based approaches. Our extensive qualitative and quantitative analysis highlights the approaches, scenarios, configurations, types of robots, sensor types, dataset usage, and path planning approaches of A-SLAM research. We conclude by presenting the limitations and proposing future research possibilities. We believe that this survey will be helpful to researchers in understanding the various methods and techniques applied to A-SLAM formulation.
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
机器人系统的控制设计很复杂,通常需要解决优化才能准确遵循轨迹。在线优化方法(例如模型预测性控制(MPC))已被证明可以实现出色的跟踪性能,但需要高计算能力。相反,基于学习的离线优化方法,例如加固学习(RL),可以在机器人上快速有效地执行,但几乎不匹配MPC在轨迹跟踪任务中的准确性。在具有有限计算的系统(例如航空车)中,必须在执行时间有效的精确控制器。我们提出了一种分析策略梯度(APG)方法来解决此问题。 APG通过在跟踪误差上以梯度下降的速度训练控制器来利用可区分的模拟器的可用性。我们解决了通过课程学习和实验经常在广泛使用的控制基准,Cartpole和两个常见的空中机器人,一个四极管和固定翼无人机上进行的训练不稳定性。在跟踪误差方面,我们提出的方法优于基于模型和无模型的RL方法。同时,它达到与MPC相似的性能,同时需要少于数量级的计算时间。我们的工作为APG作为机器人技术的有前途的控制方法提供了见解。为了促进对APG的探索,我们开放代码并在https://github.com/lis-epfl/apg_traightory_tracking上提供。
translated by 谷歌翻译
强化学习方法作为一种有前途的技术在自由浮动太空机器人的运动计划中取得了卓越的成果。但是,由于计划维度的增加和系统动态耦合的加剧,双臂自由浮动太空机器人的运动计划仍然是一个开放的挑战。特别是,由于缺乏最终效果的姿势约束,当前的研究无法处理捕获非合作对象的任务。为了解决该问题,我们提出了一种新型算法,即有效的算法,以促进基于RL的方法有效提高计划准确性。我们的核心贡献是通过先验知识指导构建一项混合政策,并引入无限规范以构建更合理的奖励功能。此外,我们的方法成功地捕获了具有不同旋转速度的旋转对象。
translated by 谷歌翻译
我们考虑在一个有限时间范围内的离散时间随机动力系统的联合设计和控制。我们将问题作为一个多步优化问题,在寻求识别系统设计和控制政策的不确定性下,共同最大化所考虑的时间范围内收集的预期奖励总和。转换函数,奖励函数和策略都是参数化的,假设与其参数有所不同。然后,我们引入了一种深度加强学习算法,将策略梯度方法与基于模型的优化技术相结合以解决这个问题。从本质上讲,我们的算法迭代地估计通过Monte-Carlo采样和自动分化的预期返回的梯度,并在环境和策略参数空间中投影梯度上升步骤。该算法称为直接环境和策略搜索(DEPS)。我们评估我们算法在三个环境中的性能,分别在三种环境中进行了一个群众弹簧阻尼系统的设计和控制,分别小型离网电力系统和无人机。此外,我们的算法是针对用于解决联合设计和控制问题的最先进的深增强学习算法的基准测试。我们表明,在所有三种环境中,DEPS至少在或更好地执行,始终如一地产生更高的迭代返回的解决方案。最后,通过我们的算法产生的解决方案也与由算法产生的解决方案相比,不共同优化环境和策略参数,突出显示在执行联合优化时可以实现更高返回的事实。
translated by 谷歌翻译
深度加强学习(RL)使得可以使用神经网络作为功能近似器来解决复杂的机器人问题。然而,在从一个环境转移到另一个环境时,在普通环境中培训的政策在泛化方面受到影响。在这项工作中,我们使用强大的马尔可夫决策过程(RMDP)来训练无人机控制策略,这将思想与强大的控制和RL相结合。它选择了悲观优化,以处理从一个环境到另一个环境的策略转移之间的潜在间隙。训练有素的控制策略是关于四转位位置控制的任务。 RL代理商在Mujoco模拟器中培训。在测试期间,使用不同的环境参数(培训期间看不见)来验证训练策略的稳健性,以从一个环境转移到另一个环境。强大的政策在这些环境中表现出标准代理,表明增加的鲁棒性增加了一般性,并且可以适应非静止环境。代码:https://github.com/adipandas/gym_multirotor
translated by 谷歌翻译