In the absence of high-resolution samples, super-resolution of sparse observations on dynamical systems is a challenging problem with wide-reaching applications in experimental settings. We showcase the application of physics-informed convolutional neural networks for super-resolution of sparse observations on grids. Results are shown for the chaotic-turbulent Kolmogorov flow, demonstrating the potential of this method for resolving finer scales of turbulence when compared with classic interpolation methods, and thus effectively reconstructing missing physics.
translated by 谷歌翻译
Measurements on dynamical systems, experimental or otherwise, are often subjected to inaccuracies capable of introducing corruption; removal of which is a problem of fundamental importance in the physical sciences. In this work we propose physics-informed convolutional neural networks for stationary corruption removal, providing the means to extract physical solutions from data, given access to partial ground-truth observations at collocation points. We showcase the methodology for 2D incompressible Navier-Stokes equations in the chaotic-turbulent flow regime, demonstrating robustness to modality and magnitude of corruption.
translated by 谷歌翻译
This work presents a physics-informed deep learning-based super-resolution framework to enhance the spatio-temporal resolution of the solution of time-dependent partial differential equations (PDE). Prior works on deep learning-based super-resolution models have shown promise in accelerating engineering design by reducing the computational expense of traditional numerical schemes. However, these models heavily rely on the availability of high-resolution (HR) labeled data needed during training. In this work, we propose a physics-informed deep learning-based framework to enhance the spatial and temporal resolution of coarse-scale (both in space and time) PDE solutions without requiring any HR data. The framework consists of two trainable modules independently super-resolving the PDE solution, first in spatial and then in temporal direction. The physics based losses are implemented in a novel way to ensure tight coupling between the spatio-temporally refined outputs at different times and improve framework accuracy. We analyze the capability of the developed framework by investigating its performance on an elastodynamics problem. It is observed that the proposed framework can successfully super-resolve (both in space and time) the low-resolution PDE solutions while satisfying physics-based constraints and yielding high accuracy. Furthermore, the analysis and obtained speed-up show that the proposed framework is well-suited for integration with traditional numerical methods to reduce computational complexity during engineering design.
translated by 谷歌翻译
复杂物理系统的高保真模拟在时空尺度上昂贵且无法访问。最近,人们对利用深度学习来增强基于粗粒的模拟来增强科学数据的兴趣越来越大,这是廉价的计算费用,并保留了令人满意的解决方案精度。但是,现有的主要工作集中在数据驱动的方法上,这些方法依赖丰富的培训数据集并缺乏足够的身体约束。为此,我们提出了一个通过物理知识学习的新颖而有效的时空超分辨率框架,灵感来自部分微分方程(PDES)中的时间和空间衍生物之间的独立性。一般原则是利用时间插值来进行流量估计,然后引入卷积转递的神经网络以学习时间细化。此外,我们采用了具有较大激活的堆叠残留块,并带有像素舍式的子像素层进行空间重建,其中特征提取是在低分辨率的潜在潜在空间中进行的。此外,我们考虑在网络中严重施加边界条件以提高重建精度。结果表明,通过广泛的数值实验,与基线算法相比,该方法的卓越有效性和效率。
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
基于有限元分析的传统方法已成功地用于预测在工业应用中广泛使用的异质材料(复合材料,多组分合金和多晶)的宏观行为。但是,这必须使网格大小小于材料中微结构异质性的特征长度尺度,从而导致计算昂贵且耗时的计算。基于深度学习的图像超分辨率(SR)算法的最新进展通过使研究人员能够增强从粗网格模拟获得的数据的时空分辨率来解决这一计算挑战的有希望的途径。然而,在开发高保真SR模型以应用于计算固体力学上,尤其是对于经历较大变形的材料,仍然存在技术挑战。这项工作旨在开发基于深度学习的超分辨率框架(Physrnet),该框架能够从低分辨率对应物中重建高分辨率变形场(位移和压力),而无需高分辨率标记的数据。我们设计了一项合成案例研究,以说明所提出的框架的有效性,并证明超排除的字段与高级数值求解器的准确性相匹配,以粗网格分辨率为400倍,同时满足(高度非线性)控制定律。该方法为应用机器学习和串联的传统数值方法打开了大门,以降低计算复杂性加速科学发现和工程设计。
translated by 谷歌翻译
动力系统的演变通常由非线性偏微分方程(PDE)控制,在模拟框架中,其解决方案需要大量的计算资源。在这项工作中,我们提出了一种新颖的方法,该方法将超网络求解器与傅立叶神经操作员体系结构相结合。我们的方法分别处理时间和空间。结果,它通过采用部分差分运算符的一般组成特性,成功地在连续时间步骤中成功传播了初始条件。在先前的工作之后,在特定时间点提供监督。我们在各个时间演化PDE上测试我们的方法,包括一个,两个和三个空间维度中的非线性流体流。结果表明,新方法在监督点的时间点提高了学习准确性,并能够插入和解决任何中间时间的解决方案。
translated by 谷歌翻译
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了有关PDE的数值模拟的大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,与机器学习的经典数值技术的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们以基于傅立叶的光谱方法为基础,这些光谱方法比其他数值方案要高得多,以模拟使用平滑且周期性解决方案的PDE。具体而言,我们为流体动力学的三个模型PDE开发了ML增强的光谱求解器,从而提高了标准光谱求解器在相同分辨率下的准确性。我们还展示了一些关键设计原则,用于将机器学习和用于解决PDE的数值方法结合使用。
translated by 谷歌翻译
这项工作提出了一种新的物理信息信息基于深度学习的超分辨率框架,可以从低分辨率对应物重建高分辨率变形领域,从粗地网格模拟或实验中获得。我们利用了物理系统的控制方程和边界条件,在不使用任何高分辨率标记数据的情况下培训模型。所提出的方法用于从低分辨率应力和通过在粗啮环上运行模拟获得的低分辨率应力和位移场来获得超分辨的变形场,以进行线性弹性变形。我们证明,超分辨的字段匹配粗地网格分辨率400倍运行的高级数值求解器的准确性,同时满足管理法律。简要评估研究比较了两种基于深度学习的超分辨率架构的性能。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
建模降低模型的划分标度动态是一个长期存在的开放问题,在海洋,大气和气候预测中发现应用直接数值模拟(DNS)是不可能的。虽然神经网络(NNS)已经应用于成功的一系列三维问题,但二维流的后向能量传输仍然是训练模型的稳定性问题。我们表明,与动态求解器和有意义的$ \ yryit {基于后验}的损耗函数一起学习模型,当应用于准嗜嗜酸性湍流时,稳定和现实的模拟。
translated by 谷歌翻译
We present an end-to-end framework to learn partial differential equations that brings together initial data production, selection of boundary conditions, and the use of physics-informed neural operators to solve partial differential equations that are ubiquitous in the study and modeling of physics phenomena. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our physics-informed neural operators to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled partial differential equations. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide the source code, an interactive website to visualize the predictions of our physics informed neural operators, and a tutorial for their use at the Data and Learning Hub for Science.
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
具有经典数字求解器的湍流模拟需要非常高分辨率的网格来准确地解决动态。在这里,我们以低空间和时间分辨率培训学习模拟器,以捕获高分辨率产生的湍流动态。我们表明我们所提出的模型可以比各种科学相关指标的相同低分辨率的经典数字求解器更准确地模拟湍流动态。我们的模型从数据训练结束到底,能够以低分辨率学习一系列挑战性的混乱和动态动态,包括最先进的雅典娜++发动机产生的轨迹。我们表明,我们的更简单,通用体系结构优于来自所学到的湍流模拟文献的各种专业的湍流特异性架构。一般来说,我们看到学习的模拟器产生不稳定的轨迹;但是,我们表明调整训练噪音和时间下采样解决了这个问题。我们还发现,虽然超出培训分配的泛化是学习模型,训练噪声,卷积架构以及增加损失约束的挑战。广泛地,我们得出的结论是,我们所知的模拟器优于传统的求解器在较粗糙的网格上运行,并强调简单的设计选择可以提供稳定性和鲁棒的泛化。
translated by 谷歌翻译
Generative Adversarial Networks (GANs) have received wide acclaim among the machine learning (ML) community for their ability to generate realistic 2D images. ML is being applied more often to complex problems beyond those of computer vision. However, current frameworks often serve as black boxes and lack physics embeddings, leading to poor ability in enforcing constraints and unreliable models. In this work, we develop physics embeddings that can be stringently imposed, referred to as hard constraints, in the neural network architecture. We demonstrate their capability for 3D turbulence by embedding them in GANs, particularly to enforce the mass conservation constraint in incompressible fluid turbulence. In doing so, we also explore and contrast the effects of other methods of imposing physics constraints within the GANs framework, especially penalty-based physics constraints popular in literature. By using physics-informed diagnostics and statistics, we evaluate the strengths and weaknesses of our approach and demonstrate its feasibility.
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
Optimal Transport(OT)提供了一个多功能框架,以几何有意义的方式比较复杂的数据分布。计算Wasserstein距离和概率措施之间的大地测量方法的传统方法需要网络依赖性域离散化,并且受差异性的诅咒。我们提出了Geonet,这是一个网状不变的深神经操作员网络,该网络从输入对的初始和终端分布对到Wasserstein Geodesic连接两个端点分布的非线性映射。在离线训练阶段,Geonet了解了以耦合PDE系统为特征的原始和双空间中OT问题动态提出的鞍点最佳条件。随后的推理阶段是瞬时的,可以在在线学习环境中进行实时预测。我们证明,Geonet在模拟示例和CIFAR-10数据集上达到了与标准OT求解器的可比测试精度,其推断阶段计算成本大大降低了。
translated by 谷歌翻译
傅里叶神经运营商(FNO)是一种基于学习的方法,用于有效地模拟部分微分方程。我们提出了分解的傅立叶神经运营商(F-FNO),允许与更深的网络更好地推广。通过仔细组合傅里叶分解,跨所有层,Markov属性和残差连接的共享内核积分运算符,F-FNOS在Navier-Stokes基准数据集的最动力设置上达到六倍的误差。我们表明我们的模型保持了2%的错误率,同时仍然比数值求解器更快地运行幅度,即使问题设置扩展到包括诸如粘度和时变力的附加上下文,也是如此。这使得与相同的预制神经网络能够模拟巨大不同的条件。
translated by 谷歌翻译
气候,化学或天体物理学中的数值模拟在计算上对于高分辨率下的不确定性定量或参数探索而言太昂贵。减少或替代模型的多个数量级更快,但是传统的替代物是僵化或不准确和纯机器学习(ML)基于基于数据的替代物。我们提出了一个混合,灵活的替代模型,该模型利用已知的物理学来模拟大规模动力学,并将学习到难以模拟的项,该术语称为参数化或闭合,并捕获了细界面对大型动力学的影响。利用神经操作员,我们是第一个学习独立于网格的,非本地和灵活的参数化的人。我们的\ textit {多尺度神经操作员}是由多尺度建模的丰富文献进行的,具有准线性运行时复杂性,比最先进的参数化更准确或更灵活,并且在混乱方程的多尺度lorenz96上证明。
translated by 谷歌翻译
许多物理过程,例如天气现象或流体力学由部分微分方程(PDE)管辖。使用神经网络建模这种动态系统是一个新兴的研究领域。然而,目前的方法以各种方式限制:它们需要关于控制方程的先验知识,并限于线性或一阶方程。在这项工作中,我们提出了一种将卷积神经网络(CNNS)与可微分的颂歌求解器结合到模型动力系统的模型。我们表明,标准PDE求解器中使用的线路方法可以使用卷曲来表示,这使得CNN是对参数化任意PDE动态的自然选择。我们的模型可以应用于任何数据而不需要任何关于管理PDE的知识。我们评估通过求解各种PDE而产生的数据集的NeuralPDE,覆盖更高的订单,非线性方程和多个空间尺寸。
translated by 谷歌翻译