建模降低模型的划分标度动态是一个长期存在的开放问题,在海洋,大气和气候预测中发现应用直接数值模拟(DNS)是不可能的。虽然神经网络(NNS)已经应用于成功的一系列三维问题,但二维流的后向能量传输仍然是训练模型的稳定性问题。我们表明,与动态求解器和有意义的$ \ yryit {基于后验}的损耗函数一起学习模型,当应用于准嗜嗜酸性湍流时,稳定和现实的模拟。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
机器学习(ML)技术,尤其是神经网络的应用在处理图像和语言时已经看到了巨大的成功。这是因为我们经常缺乏正式模型来了解视觉和音频输入,所以这里的神经网络可以展开它们的能力,因为它们可以仅从数据模型。在物理领域,我们通常具有在正式水平上合理地描述自然过程的模型。尽管如此,近年来,ML也已证明在这些领域中有用,通过加快数值模拟或通过提高准确性来实现。古典物理学中的一个重要且迄今为止未解决的问题是了解湍流流体运动。在这项工作中,我们通过使用Gledzer-Ohkitani-Yamada(Goy)壳模型来构建强烈简化的湍流表示。通过该系统,我们打算研究ML支持和物理受限的小型湍流建模的潜力。而不是标准监督学习,我们提出了一种方法,该方法旨在重建湍流的统计特性,例如自我相似的惯性范围缩放,我们可以实现令人鼓舞的实验结果。此外,我们在用微分方程结合机器学习时讨论陷阱。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
数值模拟中信息丢失可能来自各种来源,同时求解离散的部分微分方程。特别地,与等效的64位模拟相比,使用低精确的16位浮点算术进行模拟时,与精度相关的错误可能会积累在关注量中。在这里,低精度计算所需的资源要比高精度计算要低得多。最近提出的几种机器学习(ML)技术已成功纠正空间离散化引起的错误。在这项工作中,我们扩展了这些技术,以改善使用低数值精度进行的计算流体动力学(CFD)模拟。我们首先量化了在Kolmogorov强制湍流测试案例中累积的精度相关误差。随后,我们采用了卷积神经网络以及执行16位算术的完全可区分的数值求解器,以学习紧密耦合的ML-CFD混合求解器。与16位求解器相比,我们证明了ML-CFD混合求解器在减少速度场中的误差积累并在较高频率下改善动能光谱的功效。
translated by 谷歌翻译
具有经典数字求解器的湍流模拟需要非常高分辨率的网格来准确地解决动态。在这里,我们以低空间和时间分辨率培训学习模拟器,以捕获高分辨率产生的湍流动态。我们表明我们所提出的模型可以比各种科学相关指标的相同低分辨率的经典数字求解器更准确地模拟湍流动态。我们的模型从数据训练结束到底,能够以低分辨率学习一系列挑战性的混乱和动态动态,包括最先进的雅典娜++发动机产生的轨迹。我们表明,我们的更简单,通用体系结构优于来自所学到的湍流模拟文献的各种专业的湍流特异性架构。一般来说,我们看到学习的模拟器产生不稳定的轨迹;但是,我们表明调整训练噪音和时间下采样解决了这个问题。我们还发现,虽然超出培训分配的泛化是学习模型,训练噪声,卷积架构以及增加损失约束的挑战。广泛地,我们得出的结论是,我们所知的模拟器优于传统的求解器在较粗糙的网格上运行,并强调简单的设计选择可以提供稳定性和鲁棒的泛化。
translated by 谷歌翻译
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了有关PDE的数值模拟的大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,与机器学习的经典数值技术的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们以基于傅立叶的光谱方法为基础,这些光谱方法比其他数值方案要高得多,以模拟使用平滑且周期性解决方案的PDE。具体而言,我们为流体动力学的三个模型PDE开发了ML增强的光谱求解器,从而提高了标准光谱求解器在相同分辨率下的准确性。我们还展示了一些关键设计原则,用于将机器学习和用于解决PDE的数值方法结合使用。
translated by 谷歌翻译
湍流无处不在,获得有效,准确且可概括的订单模型仍然是一个具有挑战性的问题。该手稿开发了减少拉格朗日模型的湍流模型的层次结构,以研究和比较在拉格朗日框架内实施平滑的粒子流体动力学(SPH)结构与嵌入神经网络(NN)作为通用函数近似器中的效果。 SPH是用于近似流体力学方程的无网格拉格朗日方法。从基于神经网络(NN)的拉格朗日加速运算符的参数化开始,该层次结构逐渐结合了一个弱化和参数化的SPH框架,该框架可以执行物理对称性和保护定律。开发了两个新的参数化平滑核,其中包含在完全参数化的SPH模拟器中,并与立方和四分之一的平滑核进行了比较。对于每个模型,我们使用基于梯度的优化最小化的不同损耗函数,其中使用自动分化(AD)和灵敏度分析(SA)获得了有效的梯度计算。每个模型均经过两个地面真理(GT)数据集训练,该数据集与每周可压缩的均质各向同性湍流(hit),(1)使用弱压缩SPH的验证集,(2)来自直接数值模拟(DNS)的高忠诚度集。数值证据表明:(a)对“合成” SPH数据的方法验证; (b)嵌入在SPH框架中近似状态方程的NN的能力; (b)每个模型都能插入DNS数据; (c)编码更多的SPH结构可提高对不同湍流的马赫数和时间尺度的普遍性; (d)引入两个新型参数化平滑核可提高SPH比标准平滑核的准确性。
translated by 谷歌翻译
晶格Boltzmann方法(LBM)是一种用于计算流体力学及超越的有效仿真技术。它基于笛卡尔网格上的简单流和碰撞算法,这与现代机器学习架构很容易兼容。虽然变得越来越明显,深度学习可以为古典仿真技术提供决定性刺激,但最近的研究没有解决机器学习和LBM之间可能的连接。在这里,我们引入了生菜,基于Pytorch的LBM代码,具有三倍的目标。生菜使GPU加速计算具有最小源代码,便于LBM模型的快速原型设计,并且可以将LBM模拟与Pytorch的深度学习和自动分化设施集成在一起。作为与LBM组合机器学习的概念证明,开发了一种神经碰撞模型,在双周期性剪切层上训练,然后转移到不同的流动,衰减湍流。我们还举例说明了Pytorch自动差异化框架在流量控制和优化中的增加的好处。为此,保持强制各向同性湍流的光谱,而无需进一步约束速度场。源代码可从https://github.com/lettucecfd/lettuce自由使用。
translated by 谷歌翻译
In the absence of high-resolution samples, super-resolution of sparse observations on dynamical systems is a challenging problem with wide-reaching applications in experimental settings. We showcase the application of physics-informed convolutional neural networks for super-resolution of sparse observations on grids. Results are shown for the chaotic-turbulent Kolmogorov flow, demonstrating the potential of this method for resolving finer scales of turbulence when compared with classic interpolation methods, and thus effectively reconstructing missing physics.
translated by 谷歌翻译
泊松方程至关重要,以获得用于霍尔效应推进器和炉射线放电的等离子体流体模拟中的自我一致的解决方案,因为泊松解决方案看起来是不稳定的非线性流动方程的源期。作为第一步,使用多尺度架构研究了使用深神经网络的零小小的边界条件的求解2D泊松方程,以分支机构,深度和接收领域的数量定义。一个关键目标是更好地了解神经网络如何学习泊松解决方案,并提供指导方针来实现最佳网络配置,特别是当耦合到具有等离子体源术语的时变欧拉方程时。这里,发现接收领域对于正确捕获场的大拓扑结构至关重要。对多种架构,损失和封锁的调查提供了最佳的网络来准确解决稳定的泊松问题。然后在具有越来越多的节点的网格上监测称为Plasmanet的最佳神经网络求解器的性能,并与经典平行的线性溶剂进行比较。接下来,在电子等离子体振荡测试盒的上下文中,Plasmanet与不稳定的欧拉等离子体流体方程求解器联接。在这一时间不断发展的问题中,需要物理损失来产生稳定的模拟。最终测试了涉及化学和平流的更复杂的放电繁殖案例。应用了先前部分中建立的指导方针,以构建CNN,以解决具有不同边界条件的圆柱形坐标中的相同泊松方程。结果揭示了良好的CNN预测,并利用现代GPU的硬件铺平了新的计算策略,以预测涉及泊松方程的不稳定问题。
translated by 谷歌翻译
气候,化学或天体物理学中的数值模拟在计算上对于高分辨率下的不确定性定量或参数探索而言太昂贵。减少或替代模型的多个数量级更快,但是传统的替代物是僵化或不准确和纯机器学习(ML)基于基于数据的替代物。我们提出了一个混合,灵活的替代模型,该模型利用已知的物理学来模拟大规模动力学,并将学习到难以模拟的项,该术语称为参数化或闭合,并捕获了细界面对大型动力学的影响。利用神经操作员,我们是第一个学习独立于网格的,非本地和灵活的参数化的人。我们的\ textit {多尺度神经操作员}是由多尺度建模的丰富文献进行的,具有准线性运行时复杂性,比最先进的参数化更准确或更灵活,并且在混乱方程的多尺度lorenz96上证明。
translated by 谷歌翻译
转移学习(TL)已成为神经网络(NNS)的科学应用中的强大工具,例如天气/气候预测和湍流建模。 TL可以实现分布的概括(例如,参数外推)和有效的不同训练集(例如,模拟和观察值)的有效混合。在TL中,使用目标系统中的小数据集对已经训练的基础系统进行了训练的NN的选定层。对于有效的TL,我们需要知道1)重新培训的最佳层是什么? 2)在TL期间学到了哪些物理学?在这里,我们提出了新的分析和一个新的框架,以解决(1) - (2)的多种多数非线性系统。我们的方法将系统数据的光谱分析与卷积NN激活和内核的光谱分析相结合,从系统的非线性物理学来解释了TL的内部工作。使用几种2D湍流设置的亚网格尺度建模作为测试用例,我们表明,学习的内核是低,带和高通滤波器的组合,并且TL学习了新的过滤器,其性质与光谱差异一致基础和目标系统。我们还发现,在这些情况下,最浅的层是重新培训的最佳层,这违背了机器学习文献中指导TL的共同智慧。我们的框架根据物理和NN理论确定了事先重新训练的最佳层。这些分析共同解释了在TL中学到的物理学,并提供了一个框架,以指导TL,以在科学和工程中进行广泛的应用,例如气候变化建模。
translated by 谷歌翻译
流体流动在自然和工程学科中是无所不在的。由于多种时空尺度上的非线性相互作用,可靠的流体计算是一种持久的挑战。可压缩的Navier-Stokes方程管理可压缩流动,并允许复杂的现象,如湍流和冲击。尽管硬件和软件具有巨大进展,但捕获流体流量的最小长度仍然引入了现实生活应用的禁止计算成本。我们目前目前目睹了对机器学习支持的数字方案设计的范式转变,作为解决上述问题的手段。虽然事先工作已经探索了用于单位或二维不可压缩的流体流量的可微分算法,但是我们向使用高阶状态的数值方法提供了一种用于计算可压缩流体流动的完全可微分的三维框架。首先,我们通过计算经典的二维和三维测试用例来展示我们的解决者的效率,包括强烈的冲击和过渡到湍流。其次,更重要的是,我们的框架允许结束到最终的优化来改进计算流体动力学算法内的现有数值方案。特别是,我们正在使用神经网络来替代传统的数控函数。
translated by 谷歌翻译
背景:洪水是世界上最常见的自然灾害,影响数亿岁的生活。因此,洪水预测是一项重要的重要努力,通常使用物理水流模拟实现,依赖于准确的地形升降映射。然而,这种基于求解部分微分方程的这种模拟是在大规模上计算上的禁止。这种可扩展性问题通常使用高程地图的粗网格表示,尽管这种表示可能扭曲了至关重要的地形细节,导致模拟中的显着不准确。贡献:我们训练一个深度神经网络,以执行地形地图的物理信息信息:我们优化地形地图的粗网格表示,以便洪水预测将匹配细网解决方案。对于成功的学习过程,我们专门为此任务配置数据集。我们证明,通过这种方法,可以实现计算成本的显着降低,同时保持准确的解决方案。参考实施伴随着该文件以及数据集再现的文档和代码。
translated by 谷歌翻译
在过去的几年中,有监督的学习(SL)已确立了自己的最新数据驱动湍流建模。在SL范式中,基于数据集对模型进行了训练,该数据集通常通过应用相应的滤波器函数来从高保真解决方案中计算出先验的模型,该函数将已分离的和未分辨的流量尺度分开。对于隐式过滤的大涡模拟(LES),此方法是不可行的,因为在这里,使用的离散化本身是隐式滤波器函数。因此,通常不知道确切的滤波器形式,因此,即使有完整的解决方案可用,也无法计算相应的闭合项。强化学习(RL)范式可用于避免通过先前获得的培训数据集训练,而是通过直接与动态LES环境本身进行交互来避免这种不一致。这允许通过设计将潜在复杂的隐式LES过滤器纳入训练过程中。在这项工作中,我们应用了一个增强学习框架,以找到最佳的涡流粘度,以隐式过滤强制均匀的各向同性湍流的大型涡流模拟。为此,我们将基于卷积神经网络的策略网络制定湍流建模的任务作为RL任务,该杂志神经网络仅基于局部流量状态在时空中动态地适应LES中的涡流效率。我们证明,受过训练的模型可以提供长期稳定的模拟,并且在准确性方面,它们的表现优于建立的分析模型。此外,这些模型可以很好地推广到其他决议和离散化。因此,我们证明RL可以为一致,准确和稳定的湍流建模提供一个框架,尤其是对于隐式过滤的LE。
translated by 谷歌翻译
动力系统的演变通常由非线性偏微分方程(PDE)控制,在模拟框架中,其解决方案需要大量的计算资源。在这项工作中,我们提出了一种新颖的方法,该方法将超网络求解器与傅立叶神经操作员体系结构相结合。我们的方法分别处理时间和空间。结果,它通过采用部分差分运算符的一般组成特性,成功地在连续时间步骤中成功传播了初始条件。在先前的工作之后,在特定时间点提供监督。我们在各个时间演化PDE上测试我们的方法,包括一个,两个和三个空间维度中的非线性流体流。结果表明,新方法在监督点的时间点提高了学习准确性,并能够插入和解决任何中间时间的解决方案。
translated by 谷歌翻译
傅里叶神经运营商(FNO)是一种基于学习的方法,用于有效地模拟部分微分方程。我们提出了分解的傅立叶神经运营商(F-FNO),允许与更深的网络更好地推广。通过仔细组合傅里叶分解,跨所有层,Markov属性和残差连接的共享内核积分运算符,F-FNOS在Navier-Stokes基准数据集的最动力设置上达到六倍的误差。我们表明我们的模型保持了2%的错误率,同时仍然比数值求解器更快地运行幅度,即使问题设置扩展到包括诸如粘度和时变力的附加上下文,也是如此。这使得与相同的预制神经网络能够模拟巨大不同的条件。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译