This work presents a physics-informed deep learning-based super-resolution framework to enhance the spatio-temporal resolution of the solution of time-dependent partial differential equations (PDE). Prior works on deep learning-based super-resolution models have shown promise in accelerating engineering design by reducing the computational expense of traditional numerical schemes. However, these models heavily rely on the availability of high-resolution (HR) labeled data needed during training. In this work, we propose a physics-informed deep learning-based framework to enhance the spatial and temporal resolution of coarse-scale (both in space and time) PDE solutions without requiring any HR data. The framework consists of two trainable modules independently super-resolving the PDE solution, first in spatial and then in temporal direction. The physics based losses are implemented in a novel way to ensure tight coupling between the spatio-temporally refined outputs at different times and improve framework accuracy. We analyze the capability of the developed framework by investigating its performance on an elastodynamics problem. It is observed that the proposed framework can successfully super-resolve (both in space and time) the low-resolution PDE solutions while satisfying physics-based constraints and yielding high accuracy. Furthermore, the analysis and obtained speed-up show that the proposed framework is well-suited for integration with traditional numerical methods to reduce computational complexity during engineering design.
translated by 谷歌翻译
基于有限元分析的传统方法已成功地用于预测在工业应用中广泛使用的异质材料(复合材料,多组分合金和多晶)的宏观行为。但是,这必须使网格大小小于材料中微结构异质性的特征长度尺度,从而导致计算昂贵且耗时的计算。基于深度学习的图像超分辨率(SR)算法的最新进展通过使研究人员能够增强从粗网格模拟获得的数据的时空分辨率来解决这一计算挑战的有希望的途径。然而,在开发高保真SR模型以应用于计算固体力学上,尤其是对于经历较大变形的材料,仍然存在技术挑战。这项工作旨在开发基于深度学习的超分辨率框架(Physrnet),该框架能够从低分辨率对应物中重建高分辨率变形场(位移和压力),而无需高分辨率标记的数据。我们设计了一项合成案例研究,以说明所提出的框架的有效性,并证明超排除的字段与高级数值求解器的准确性相匹配,以粗网格分辨率为400倍,同时满足(高度非线性)控制定律。该方法为应用机器学习和串联的传统数值方法打开了大门,以降低计算复杂性加速科学发现和工程设计。
translated by 谷歌翻译
这项工作提出了一种新的物理信息信息基于深度学习的超分辨率框架,可以从低分辨率对应物重建高分辨率变形领域,从粗地网格模拟或实验中获得。我们利用了物理系统的控制方程和边界条件,在不使用任何高分辨率标记数据的情况下培训模型。所提出的方法用于从低分辨率应力和通过在粗啮环上运行模拟获得的低分辨率应力和位移场来获得超分辨的变形场,以进行线性弹性变形。我们证明,超分辨的字段匹配粗地网格分辨率400倍运行的高级数值求解器的准确性,同时满足管理法律。简要评估研究比较了两种基于深度学习的超分辨率架构的性能。
translated by 谷歌翻译
复杂物理系统的高保真模拟在时空尺度上昂贵且无法访问。最近,人们对利用深度学习来增强基于粗粒的模拟来增强科学数据的兴趣越来越大,这是廉价的计算费用,并保留了令人满意的解决方案精度。但是,现有的主要工作集中在数据驱动的方法上,这些方法依赖丰富的培训数据集并缺乏足够的身体约束。为此,我们提出了一个通过物理知识学习的新颖而有效的时空超分辨率框架,灵感来自部分微分方程(PDES)中的时间和空间衍生物之间的独立性。一般原则是利用时间插值来进行流量估计,然后引入卷积转递的神经网络以学习时间细化。此外,我们采用了具有较大激活的堆叠残留块,并带有像素舍式的子像素层进行空间重建,其中特征提取是在低分辨率的潜在潜在空间中进行的。此外,我们考虑在网络中严重施加边界条件以提高重建精度。结果表明,通过广泛的数值实验,与基线算法相比,该方法的卓越有效性和效率。
translated by 谷歌翻译
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了有关PDE的数值模拟的大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,与机器学习的经典数值技术的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们以基于傅立叶的光谱方法为基础,这些光谱方法比其他数值方案要高得多,以模拟使用平滑且周期性解决方案的PDE。具体而言,我们为流体动力学的三个模型PDE开发了ML增强的光谱求解器,从而提高了标准光谱求解器在相同分辨率下的准确性。我们还展示了一些关键设计原则,用于将机器学习和用于解决PDE的数值方法结合使用。
translated by 谷歌翻译
We present an end-to-end framework to learn partial differential equations that brings together initial data production, selection of boundary conditions, and the use of physics-informed neural operators to solve partial differential equations that are ubiquitous in the study and modeling of physics phenomena. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our physics-informed neural operators to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled partial differential equations. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide the source code, an interactive website to visualize the predictions of our physics informed neural operators, and a tutorial for their use at the Data and Learning Hub for Science.
translated by 谷歌翻译
在本文中,提出了一种新的深度学习框架,用于血管流动的时间超分辨率模拟,其中从低时间分辨率的流动模拟结果产生高时分分辨时变血管流动模拟。在我们的框架中,Point-Cloud用于表示复杂的血管模型,建议电阻 - 时间辅助表模型用于提取时变流场的时间空间特征,最后我们可以重建高精度和高精度高分辨率流场通过解码器模块。特别地,从速度的矢量特征提出了速度的幅度损失和方向损失。并且这两个度量的组合构成了网络培训的最终损失函数。给出了几个例子来说明血管流动时间超分辨率模拟所提出的框架的有效和效率。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
许多物理过程,例如天气现象或流体力学由部分微分方程(PDE)管辖。使用神经网络建模这种动态系统是一个新兴的研究领域。然而,目前的方法以各种方式限制:它们需要关于控制方程的先验知识,并限于线性或一阶方程。在这项工作中,我们提出了一种将卷积神经网络(CNNS)与可微分的颂歌求解器结合到模型动力系统的模型。我们表明,标准PDE求解器中使用的线路方法可以使用卷曲来表示,这使得CNN是对参数化任意PDE动态的自然选择。我们的模型可以应用于任何数据而不需要任何关于管理PDE的知识。我们评估通过求解各种PDE而产生的数据集的NeuralPDE,覆盖更高的订单,非线性方程和多个空间尺寸。
translated by 谷歌翻译
可靠,高分辨率气候和天气数据的可用性对于为气候适应和缓解的长期决策提供了重要的意见,并指导对极端事件的快速响应。预测模型受到计算成本的限制,因此通常以粗空间分辨率预测数量。统计降尺度可以提供高采样低分辨率数据的有效方法。在这个领域,经常使用计算机视觉中超分辨率域中的方法成功地应用了深度学习。尽管经常取得令人信服的结果,但这种模型在预测物理变量时通常会违反保护法。为了节省重要的物理量,我们开发的方法可以通过深层缩减模型来确保物理约束,同时还根据传统指标提高其性能。我们介绍了约束网络的两种方法:添加到神经网络末尾的重新归一化层,并连续的方法随着增加的采样因子的增加而扩展。我们使用ERE5重新分析数据显示了我们在不同流行架构和更高采样因子上的方法的适用性。
translated by 谷歌翻译
Structural failures are often caused by catastrophic events such as earthquakes and winds. As a result, it is crucial to predict dynamic stress distributions during highly disruptive events in real time. Currently available high-fidelity methods, such as Finite Element Models (FEMs), suffer from their inherent high complexity. Therefore, to reduce computational cost while maintaining accuracy, a Physics Informed Neural Network (PINN), PINN-Stress model, is proposed to predict the entire sequence of stress distribution based on Finite Element simulations using a partial differential equation (PDE) solver. Using automatic differentiation, we embed a PDE into a deep neural network's loss function to incorporate information from measurements and PDEs. The PINN-Stress model can predict the sequence of stress distribution in almost real-time and can generalize better than the model without PINN.
translated by 谷歌翻译
Optimal Transport(OT)提供了一个多功能框架,以几何有意义的方式比较复杂的数据分布。计算Wasserstein距离和概率措施之间的大地测量方法的传统方法需要网络依赖性域离散化,并且受差异性的诅咒。我们提出了Geonet,这是一个网状不变的深神经操作员网络,该网络从输入对的初始和终端分布对到Wasserstein Geodesic连接两个端点分布的非线性映射。在离线训练阶段,Geonet了解了以耦合PDE系统为特征的原始和双空间中OT问题动态提出的鞍点最佳条件。随后的推理阶段是瞬时的,可以在在线学习环境中进行实时预测。我们证明,Geonet在模拟示例和CIFAR-10数据集上达到了与标准OT求解器的可比测试精度,其推断阶段计算成本大大降低了。
translated by 谷歌翻译
In the absence of high-resolution samples, super-resolution of sparse observations on dynamical systems is a challenging problem with wide-reaching applications in experimental settings. We showcase the application of physics-informed convolutional neural networks for super-resolution of sparse observations on grids. Results are shown for the chaotic-turbulent Kolmogorov flow, demonstrating the potential of this method for resolving finer scales of turbulence when compared with classic interpolation methods, and thus effectively reconstructing missing physics.
translated by 谷歌翻译
对复杂建筑环境的结构监测通常在设计,实验室测试和实际建筑参数之间遭受不匹配。此外,现实世界中的结构识别问题遇到了许多挑战。例如,缺乏准确的基线模型,高维度和复杂的多元部分微分方程(PDE)在训练和学习常规数据驱动算法方面遇到了重大困难。本文通过增强使用神经网络来控制结构动力学的PDE来探讨一个称为Neuralsi的新框架,以供结构识别。我们的方法试图从管理方程式估算非线性参数。我们考虑具有两个未知参数的非线性光束的振动,一个参数代表几何和材料变化,另一种代表主要通过阻尼捕获系统中的能量损失。参数估计的数据是从有限的一组测量值中获得的,这有利于在结构健康监测中的应用,其中通常未知现有结构的确切状态,并且只能在现场收集有限的数据样本。也可以使用已识别的结构参数在标准和极端条件下训练有素的模型。我们与纯数据驱动的神经网络和其他经典物理信息的神经网络(PINN)进行了比较。我们的方法将位移分布中的插值和外推误差降低了基线上的两到五个数量级。代码可从https://github.com/human-analysis/naural-scruptural-isendification获得。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
物理知识的神经网络(PINNS)由于能力将物理定律纳入模型,在工程的各个领域都引起了很多关注。但是,对机械和热场之间涉及耦合的工业应用中PINN的评估仍然是一个活跃的研究主题。在这项工作中,我们提出了PINNS在非牛顿流体热机械问题上的应用,该问题通常在橡胶日历过程中考虑。我们证明了PINN在处理逆问题和不良问题时的有效性,这些问题是不切实际的,可以通过经典的数值离散方法解决。我们研究了传感器放置的影响以及无监督点对PINNS性能的分布,即从某些部分数据中推断出隐藏的物理领域的问题。我们还研究了PINN从传感器捕获的测量值中识别未知物理参数的能力。在整个工作中,还考虑了嘈杂测量的效果。本文的结果表明,在识别问题中,PINN可以仅使用传感器上的测量结果成功估算未知参数。在未完全定义边界条件的不足问题中,即使传感器的放置和无监督点的分布对PINNS性能产生了很大的影响,我们表明该算法能够从局部测量中推断出隐藏的物理。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
事实证明,神经操作员是无限维函数空间之间非线性算子的强大近似值,在加速偏微分方程(PDE)的溶液方面是有希望的。但是,它需要大量的模拟数据,这些数据可能成本高昂,从而导致鸡肉 - 蛋的困境并限制其在求解PDE中的使用。为了摆脱困境,我们提出了一个无数据的范式,其中神经网络直接从由离散的PDE构成的平方平方残留(MSR)损失中学习物理。我们研究了MSR损失中的物理信息,并确定神经网络必须具有对PDE空间域中的远距离纠缠建模的挑战,PDE的空间域中的模式在不同的PDE中有所不同。因此,我们提出了低级分解网络(Lordnet),该网络可调节,并且也有效地建模各种纠缠。具体而言,Lordnet通过简单的完全连接的层学习了与全球纠缠的低级别近似值,从而以降低的计算成本来提取主要模式。关于解决泊松方程和纳维尔 - 长方式方程的实验表明,MSR损失的物理约束可以提高神经网络的精确度和泛化能力。此外,Lordnet在PDE中的其他现代神经网络体系结构都优于最少的参数和最快的推理速度。对于Navier-Stokes方程式,学习的运算符的速度比具有相同计算资源的有限差异解决方案快50倍。
translated by 谷歌翻译
气候,化学或天体物理学中的数值模拟在计算上对于高分辨率下的不确定性定量或参数探索而言太昂贵。减少或替代模型的多个数量级更快,但是传统的替代物是僵化或不准确和纯机器学习(ML)基于基于数据的替代物。我们提出了一个混合,灵活的替代模型,该模型利用已知的物理学来模拟大规模动力学,并将学习到难以模拟的项,该术语称为参数化或闭合,并捕获了细界面对大型动力学的影响。利用神经操作员,我们是第一个学习独立于网格的,非本地和灵活的参数化的人。我们的\ textit {多尺度神经操作员}是由多尺度建模的丰富文献进行的,具有准线性运行时复杂性,比最先进的参数化更准确或更灵活,并且在混乱方程的多尺度lorenz96上证明。
translated by 谷歌翻译