In this paper I will present a novel way of combining proof net proof search with neural networks. It contrasts with the 'standard' approach which has been applied to proof search in type-logical grammars in various different forms. In the standard approach, we first transform words to formulas (supertagging) then match atomic formulas to obtain a proof. I will introduce an alternative way to split the task into two: first, we generate the graph structure in a way which guarantees it corresponds to a lambda-term, then we obtain the detailed structure using vertex labelling. Vertex labelling is a well-studied task in graph neural networks, and different ways of implementing graph generation using neural networks will be explored.
translated by 谷歌翻译
在结构证明理论中,设计和研究大量微积分使得很难单独和作为整个系统的一部分获得有关每个规则的直觉。我们介绍了两种新颖的工具,以使用图理论和自动机理论的方法来帮助计算。第一个工具是证明树自动机(PTA):树自动机哪种语言是微积分的派生语言。第二个工具是称为证明树图(PTG)的演算的图形表示。在此定向超图中,顶点是术语(例如序列),而Hyperarcs是规则。我们探索PTA和PTG的属性以及它们如何相互关系。我们表明,我们可以将PTA分解为从微积分到传统树自动机的部分地图。我们在改进系统理论中制定了这一说法。最后,我们将框架与证明网和弦图进行比较。
translated by 谷歌翻译
我们认为张力语法是基于古典(而不是直观的)线性逻辑的卷曲语法。它们可以被视为抽象分类语法ACG的表面表示,即ACG转换为派生的感觉张于语法和这种翻译是弦语言水平的同构。基本成分是张量术语,可以看作是编码和概括的证明网。使用张量术语使语法非常简单,直接几何含义变得透明。然后我们解决了在我们的环境中编码非容性行动的问题。在使用新的机构运算符丰富系统后,这使得可以将ACG和Lambek语法作为保守碎片代表,而形式主义仍然存在,因此在我们看来,相当简单和直观。
translated by 谷歌翻译
图形神经网络(GNNS)是关于图形机器学习问题的深度学习架构。最近已经表明,GNN的富有效力可以精确地由组合Weisfeiler-Leman算法和有限可变计数逻辑来表征。该对应关系甚至导致了对应于更高维度的WL算法的新的高阶GNN。本文的目的是解释GNN的这些描述性特征。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译
众所周知,不同的类别语法在一阶乘法线性逻辑的片段中具有表面表示。我们表明,感兴趣的片段等同于最近引入的{\ IT扩展了张量型色石}。这不仅为前者提供了一些替代语法和直观的几何表示,而且还提供了固有的演绎系统。
translated by 谷歌翻译
对表示形式的研究对于任何形式的交流都是至关重要的,我们有效利用它们的能力至关重要。本文介绍了一种新颖的理论 - 代表性系统理论 - 旨在从三个核心角度从三个核心角度进行抽象地编码各种表示:语法,综合及其属性。通过介绍建筑空间的概念,我们能够在一个统一的范式下编码这些核心组件中的每个核心组件。使用我们的代表性系统理论,有可能在结构上将一个系统中的表示形式转换为另一个系统的表示形式。我们结构转化技术的固有方面是根据表示的属性(例如它们的相对认知有效性或结构复杂性)的代表选择。提供一般结构转化技术的主要理论障碍是缺乏终止算法。代表系统理论允许在没有终止算法的情况下衍生部分变换。由于代表性系统理论提供了一种通用编码代表系统的通用方法,因此消除了进一步的关键障碍:需要设计特定于系统的结构转换算法,这是当不同系统采用不同的形式化方法时所必需的。因此,代表性系统理论是第一个提供统一方法来编码表示形式,通过结构转换支持表示形式的第一个通用框架,并具有广泛的实用应用。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译
我们介绍了概率世界,这是一个新的全象征性的贝叶斯型号的语义解析和推理模型,作为对更具领域和任务通用NLU和AI的研究计划的第一步。人类创造了他们观察的内部心理模型,这极大地帮助理解和理解大量问题。在PWM中,句子的含义,获得世界的事实,以及推理的中间步骤都以人类可读的形式表达,具有可解释性的设计目标。 PWM是贝叶斯,专为能够概括新域和新任务而设计。我们派生并实现了一种推导算法,通过解析和释放捕获这些句子的语义的潜在世界模型来读取句子,并在两个域名问题答案数据集中评估它:(1)校对器和(2 )我们呼叫虚构的新数据集,旨在更具实际语言的代表,但仍然足够简单,以重新评估推理能力,同时对启发式鲁棒。我们的方法均优于两者的基线,从而将其值证明其作为概念验证。
translated by 谷歌翻译
结构分解方法,例如普遍的高树木分解,已成功用于解决约束满意度问题(CSP)。由于可以重复使用分解以求解具有相同约束范围的CSP,因此即使计算本身很难,将资源投资于计算良好的分解是有益的。不幸的是,即使示波器仅略有变化,当前方法也需要计算全新的分解。在本文中,我们迈出了解决CSP $ P $分解的问题的第一步,以使其成为由$ P $修改产生的新CSP $ P'$的有效分解。即使从理论上讲问题很难,我们还是提出并实施了一个有效更新GHD的框架。我们算法的实验评估强烈提出了实际适用性。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
我们对无上下文的语法推断实施了分裂和相连的迭代投影方法。与大多数最新的自然语言处理模型不同,我们的方法需要相对较少的离散参数,从而使推断的语法直接可解释 - 可以从解决方案中读取如何构建语法有效的句子。我们方法的另一个优点是,与许多其他模型所采用的数百GB培训数据相比,仅几句句子从几句句子中推断出有意义的语法规则。我们演示了应用我们的方法的几种方法:对单词进行分类并从头开始推断语法,采用现有语法并完善其类别和规则,并采用现有的语法并扩大其词典,因为它在新数据中遇到新单词。
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
回答集编程(ASP)已成为一种流行的和相当复杂的声明问题解决方法。这是由于其具有吸引力的地址解决方案的工作流程,这是可以轻松解决问题解决的方法,即使对于计算机科学外的守护者而言。与此不同,底层技术的高度复杂性使得ASP专家越来越难以将想法付诸实践。有关解决此问题,本教程旨在使用户能够构建自己的基于ASP的系统。更确切地说,我们展示了ASP系统Clingo如何用于扩展ASP和实现定制的专用系统。为此,我们提出了两个替代方案。我们从传统的AI技术开始,并展示元编程如何用于扩展ASP。这是一种相当轻的方法,依赖于Clingo的reation特征来使用ASP本身表达新功能。与此不同,本教程的主要部分使用传统的编程(在Python中)来通过其应用程序编程接口操纵Clingo。这种方法允许改变和控制ASP的整个模型 - 地面解决工作流程。 COMENT of Clingo的新应用程序课程使我们能够通过自定义类似于Clingo中的进程来绘制Clingo的基础架构。例如,我们可能会互动到程序的抽象语法树,控制各种形式的多射击求解,并为外国推论设置理论传播者。另一种横截面结构,跨越元以及应用程序编程是Clingo的中间格式,即指定底层接地器和求解器之间的界面。我们通过示例和几个非琐碎的案例研究说明了本教程的前述概念和技术。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
在概念学习,数据库查询的反向工程,生成参考表达式以及知识图中的实体比较之类的应用中,找到以标记数据项形式分开的逻辑公式,该公式分开以标记数据项形式给出的正面和负面示例。在本文中,我们研究了存在本体论的数据的分离公式的存在。对于本体语言和分离语言,我们都专注于一阶逻辑及其以下重要片段:描述逻辑$ \ Mathcal {alci} $,受保护的片段,两变量的片段和受保护的否定片段。为了分离,我们还考虑(工会)连接性查询。我们考虑了几种可分离性,这些可分离性在负面示例的治疗中有所不同,以及他们是否承认使用其他辅助符号来实现分离。我们的主要结果是(所有变体)可分离性,不同语言的分离能力的比较以及确定可分离性的计算复杂性的研究。
translated by 谷歌翻译
我们研究了一阶乘法线性逻辑(MLL1)之间的关系,已知为不同的分类语法提供表示,并且最近引入的扩展张量型微积分(ETTC)。我们识别MLL1的片段,这对于许多语法表示似乎足够,并建立了ETTC与此片段之间的对应关系。因此,系统ETTC可以作为替代语法和内在的演绎系统以及后者的几何表示。我们还给出了欧廷人的自然扣除制定,这可能方便。
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译