图形神经网络(GNNS)是关于图形机器学习问题的深度学习架构。最近已经表明,GNN的富有效力可以精确地由组合Weisfeiler-Leman算法和有限可变计数逻辑来表征。该对应关系甚至导致了对应于更高维度的WL算法的新的高阶GNN。本文的目的是解释GNN的这些描述性特征。
translated by 谷歌翻译
Knowledge graphs, modeling multi-relational data, improve numerous applications such as question answering or graph logical reasoning. Many graph neural networks for such data emerged recently, often outperforming shallow architectures. However, the design of such multi-relational graph neural networks is ad-hoc, driven mainly by intuition and empirical insights. Up to now, their expressivity, their relation to each other, and their (practical) learning performance is poorly understood. Here, we initiate the study of deriving a more principled understanding of multi-relational graph neural networks. Namely, we investigate the limitations in the expressive power of the well-known Relational GCN and Compositional GCN architectures and shed some light on their practical learning performance. By aligning both architectures with a suitable version of the Weisfeiler-Leman test, we establish under which conditions both models have the same expressive power in distinguishing non-isomorphic (multi-relational) graphs or vertices with different structural roles. Further, by leveraging recent progress in designing expressive graph neural networks, we introduce the $k$-RN architecture that provably overcomes the expressiveness limitations of the above two architectures. Empirically, we confirm our theoretical findings in a vertex classification setting over small and large multi-relational graphs.
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
最近出现了许多子图增强图神经网络(GNN),可证明增强了标准(消息通话)GNN的表达能力。但是,对这些方法之间的相互关系和weisfeiler层次结构的关系有限。此外,当前的方法要么使用给定尺寸的所有子图,要随机均匀地对其进行采样,或者使用手工制作的启发式方法,而不是学习以数据驱动的方式选择子图。在这里,我们提供了一种统一的方法来研究此类体系结构,通过引入理论框架并扩展了亚图增强GNN的已知表达结果。具体而言,我们表明,增加子图的大小总是会增加表达能力,并通过将它们与已建立的$ k \ text { - } \ Mathsf {Wl} $ hierArchy联系起来,从而更好地理解其局限性。此外,我们还使用最近通过复杂的离散概率分布进行反向传播的方法探索了学习对子图进行采样的不同方法。从经验上讲,我们研究了不同子图增强的GNN的预测性能,表明我们的数据驱动体系结构与非DATA驱动的亚图增强图形神经网络相比,在标准基准数据集上提高了对标准基准数据集的预测准确性,同时减少了计算时间。
translated by 谷歌翻译
尽管(消息通话)图形神经网络在图形或一般关系数据上近似置换量等函数方面具有明显的局限性,但更具表现力的高阶图神经网络不会扩展到大图。他们要么在$ k $ - 订单张量子上操作,要么考虑所有$ k $ - 节点子图,这意味着在内存需求中对$ k $的指数依赖,并且不适合图形的稀疏性。通过为图同构问题引入新的启发式方法,我们设计了一类通用的,置换式的图形网络,与以前的体系结构不同,该网络在表达性和可伸缩性之间提供了细粒度的控制,并适应了图的稀疏性。这些体系结构与监督节点和图形级别的标准高阶网络以及回归体系中的标准高阶图网络相比大大减少了计算时间,同时在预测性能方面显着改善了标准图神经网络和图形内核体系结构。
translated by 谷歌翻译
图形神经网络(GNNS)是图形处理的广泛连接主义模型。它们对每个节点及其邻居进行迭代消息传递操作,以解决分类/群集任务 - 在某些节点或整个图表上 - 无论其订单如何,都会收集所有此类消息。尽管属于该类的各种模型之间的差异,但大多数基于本地聚合机制和直观地采用相同的计算方案,并直观地,本地计算框架主要负责GNN的表现力。在本文中,我们证明了Weisfeiler - Lehman测试在恰好对应于原始GNN模型上定义的展开等价的图表节点上引起了等效关系。因此,原始GNN的表现力的结果可以扩展到一般GNN,其在​​温和条件下可以证明能够以概率和最高的任何精度近似于朝向展开等价的图表中的任何功能。
translated by 谷歌翻译
我们研究了图形表示学习的量子电路,并提出了等级的量子图电路(EQGCS),作为一类参数化量子电路,具有强大的关系感应偏压,用于学习图形结构数据。概念上,EQGCS作为量子图表表示学习的统一框架,允许我们定义几个有趣的子类,其中包含了现有的提案。就代表性权力而言,我们证明了感兴趣的子类是界限图域中的函数的普遍近似器,并提供实验证据。我们对量子图机学习方法的理论透视开启了许多方向以进行进一步的工作,可能导致具有超出古典方法的能力的模型。
translated by 谷歌翻译
我们回答以下问题,哪些结合性查询以多种方式上的许多正和负面示例以及如何有效地构建此类示例的特征。结果,我们为一类连接的查询获得了一种新的有效的精确学习算法。我们的贡献的核心是两种新的多项式时间算法,用于在有限结构的同态晶格中构建前沿。我们还讨论了模式映射和描述逻辑概念的独特特征性和可学习性的影响。
translated by 谷歌翻译
图表学习方法的理论分析通常假设输入图的完全观察。由于实践中的可扩展性问题,这种假设可能对处理任何大小的图表都不有用。在这项工作中,我们在部分观察设置中开发了图形分类问题的理论框架(即,子图采样)。在图形限制理论中配备了洞察力,我们提出了一种新的图形分类模型,用于在随机采样的子图和新颖的拓扑上工作,以表征模型的可颂扬性。我们的理论框架在图形上提供了迷你批量学习的理论验证,并导致新的学习 - 理论上的泛化界限以及尺寸概括地,而不是输入的假设。
translated by 谷歌翻译
图形神经网络(GNNS)具有有限的表现力量,无法正确代表许多图形类。虽然更具表现力的图表表示学习(GRL)替代方案可以区分其中一些类,但它们明显难以实现,可能不会很好地扩展,并且尚未显示在现实世界任务中优于经过良好调整的GNN。因此,设计简单,可扩展和表现力的GRL架构,也实现了现实世界的改进仍然是一个开放的挑战。在这项工作中,我们展示了图形重建的程度 - 从其子图重建图形 - 可以减轻GRL架构目前面临的理论和实际问题。首先,我们利用图形重建来构建两个新的表达图表表示。其次,我们展示了图形重建如何提升任何GNN架构的表现力,同时是一个(可证明的)强大的归纳偏见,用于侵略性的侵略性。凭经验,我们展示了重建如何提高GNN的表现力 - 同时保持其与顶点的排列的不变性 - 通过解决原始GNN的七个图形属性任务而无法解决。此外,我们展示了如何在九世界基准数据集中提升最先进的GNN性能。
translated by 谷歌翻译
在本文中,我们通过图形函数的关键代数条件(称为\ textIt {置换兼容性})完全回答上述问题,该函数将图形和图形的特征​​与功能约束相关联。我们证明:(i)GNN作为图形函数必然是兼容的; (ii)相反,当限制具有不同节点特征的输入图上时,任何置换兼容函数都可以由GNN生成; (iii)对于任意节点特征(不一定是不同),一个简单的功能增强方案足以生成GNN置换兼容函数; (iv)可以通过仅检查二次功能约束,而不是对所有排列的详尽搜索来验证置换兼容性; (v)GNN可以生成\ textIt {any}图形函数,一旦我们以节点身份增强节点特征,从而超越了图同构和置换兼容性。上面的表征铺平了正式研究GNN和其他算法程序之间复杂联系的路径。例如,我们的表征意味着许多自然图问题,例如最小值值,最大流量值,最大值尺寸和最短路径,可以使用简单的功能增强来生成GNN。相比之下,每当GNN无法生成具有相同特征的置换函数时,著名的Weisfeiler-Lehman图形测试就会失败。我们分析的核心是一种新的表示定理,它标识了GNN的基础函数。这使我们能够将目标图函数的属性转化为GNN聚合函数的属性。
translated by 谷歌翻译
Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the 'combine' function of size polynomial or even exponential in the number of graph nodes $n$, as well as feature vectors of length linear in $n$. We present an improved simulation of the WL test on GNNs with \emph{exponentially} lower complexity. In particular, the neural network implementing the combine function in each node has only a polylogarithmic number of parameters in $n$, and the feature vectors exchanged by the nodes of GNN consists of only $O(\log n)$ bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction.
translated by 谷歌翻译
消息传递神经网络(MPNNS)是由于其简单性和可扩展性而大部分地进行图形结构数据的深度学习的领先架构。不幸的是,有人认为这些架构的表现力有限。本文提出了一种名为Comifariant Subgraph聚合网络(ESAN)的新颖框架来解决这个问题。我们的主要观察是,虽然两个图可能无法通过MPNN可区分,但它们通常包含可区分的子图。因此,我们建议将每个图形作为由某些预定义策略导出的一组子图,并使用合适的等分性架构来处理它。我们为图同构同构同构造的1立维Weisfeiler-Leman(1-WL)测试的新型变体,并在这些新的WL变体方面证明了ESAN的表达性下限。我们进一步证明,我们的方法增加了MPNNS和更具表现力的架构的表现力。此外,我们提供了理论结果,描述了设计选择诸如子图选择政策和等效性神经结构的设计方式如何影响我们的架构的表现力。要处理增加的计算成本,我们提出了一种子图采样方案,可以将其视为我们框架的随机版本。关于真实和合成数据集的一套全面的实验表明,我们的框架提高了流行的GNN架构的表现力和整体性能。
translated by 谷歌翻译
子图GNNS是最近表达的图形神经网络(GNN)的一类,它们将图形图形为子图的集合。到目前为止,可能的子图GNN体系结构的设计空间及其基本理论属性仍然在很大程度上尚未探索。在本文中,我们研究了子图方法的最突出形式,该方法采用了基于节点的子图选择策略,例如自我网络或节点标记和删除。我们解决了两个中心问题:(1)这些方法的表达能力的上限是什么? (2)在这些子图集上传递层的模棱两可的消息家族是什么?我们回答这些问题的第一步是一种新颖的对称分析,该分析表明,建模基于节点的子图集的对称性需要比以前的作品中所采用的对称组明显小。然后,该分析用于建立子图GNN和不变图网络(IGNS)之间的联系。我们通过首先通过3-WL来界定子图方法的表达能力,然后提出一个通用子图方法的一般家族,以将所有先前基于节点的子图GNN泛化。最后,我们设计了一个新颖的子图Gnn称为Sun,从理论上讲,该子gnn统一了以前的体系结构,同时在多个基准上提供了更好的经验性能。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
在概念学习,数据库查询的反向工程,生成参考表达式以及知识图中的实体比较之类的应用中,找到以标记数据项形式分开的逻辑公式,该公式分开以标记数据项形式给出的正面和负面示例。在本文中,我们研究了存在本体论的数据的分离公式的存在。对于本体语言和分离语言,我们都专注于一阶逻辑及其以下重要片段:描述逻辑$ \ Mathcal {alci} $,受保护的片段,两变量的片段和受保护的否定片段。为了分离,我们还考虑(工会)连接性查询。我们考虑了几种可分离性,这些可分离性在负面示例的治疗中有所不同,以及他们是否承认使用其他辅助符号来实现分离。我们的主要结果是(所有变体)可分离性,不同语言的分离能力的比较以及确定可分离性的计算复杂性的研究。
translated by 谷歌翻译
允许代理商通过沟通共享信息对于解决多代理增强学习中的复杂任务至关重要。在这项工作中,我们考虑了给定通信协议是否可以表达任意政策的问题。通过观察许多现有协议可以看作是图神经网络(GNN)的实例,我们证明了联合动作选择与节点标记的等效性。通过证明其表达能力的标准GNN方法,我们从现有的GNN文献中汲取了限制,并考虑使用以下方式增强剂观察:(1)独特的代理ID和(2)随机噪声。我们提供了有关这些方法如何产生普遍表达性交流的理论分析,并证明它们能够针对相同代理的任意行动集。从经验上讲,这些增强被发现可以改善需要表达性交流的任务的性能,而通常发现最佳通信协议是任务依赖性的。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
学习优化是一个快速增长的领域,旨在使用机器学习(ML)来解决优化问题或改善现有的优化算法。特别是,图形神经网络(GNN)被认为是用于优化问题的合适ML模型,其变量和约束是置换的 - 例如线性程序(LP)。尽管文献报道了令人鼓舞的数值结果,但本文确定了将GNN应用于解决LP的理论基础。给定LPS的任何尺寸限制,我们构造了一个GNN,该GNN将不同的LP映射到不同的输出。我们表明,正确构建的GNN可以可靠地预测广泛类别中每个LP的可行性,界限和最佳解决方案。我们的证明是基于最近发现的Weisfeiler-Lehman同构测试与GNN之间的联系。为了验证我们的结果,我们培训了一个简单的GNN,并提出了将LP映射到其可行性和解决方案中的准确性。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译