In this paper, we introduce PDE-LEARN, a novel PDE discovery algorithm that can identify governing partial differential equations (PDEs) directly from noisy, limited measurements of a physical system of interest. PDE-LEARN uses a Rational Neural Network, $U$, to approximate the system response function and a sparse, trainable vector, $\xi$, to characterize the hidden PDE that the system response function satisfies. Our approach couples the training of $U$ and $\xi$ using a loss function that (1) makes $U$ approximate the system response function, (2) encapsulates the fact that $U$ satisfies a hidden PDE that $\xi$ characterizes, and (3) promotes sparsity in $\xi$ using ideas from iteratively reweighted least-squares. Further, PDE-LEARN can simultaneously learn from several data sets, allowing it to incorporate results from multiple experiments. This approach yields a robust algorithm to discover PDEs directly from realistic scientific data. We demonstrate the efficacy of PDE-LEARN by identifying several PDEs from noisy and limited measurements.
translated by 谷歌翻译
PDE发现显示了揭示复杂物理系统的预测模型,但在测量稀疏和嘈杂时难以困难。我们介绍了一种新方法,用于PDE发现,它使用两个合理的神经网络和原始的稀疏回归算法来识别管理系统响应的隐藏动态。第一网络了解系统响应函数,而第二个网络了解一个驱动系统演进的隐藏PDE。然后,我们使用无参数稀疏回归算法从第二网络中提取隐藏PDE的人类可读形式。我们在名为PDE-读取的开源库中实现了我们的方法。我们的方法成功地识别了热,汉堡和KorteDeg-de Vries方程,具有显着的一致性。我们表明,我们的方法对稀疏性和噪音都是前所未有的强大,因此适用于现实世界的观察数据。
translated by 谷歌翻译
这项工作与发现物理系统的偏微分方程(PDE)有关。现有方法证明了有限观察结果的PDE识别,但未能保持令人满意的噪声性能,部分原因是由于次优估计衍生物并发现了PDE系数。我们通过引入噪音吸引物理学的机器学习(NPIML)框架来解决问题,以在任意分布后从数据中发现管理PDE。我们的建议是双重的。首先,我们提出了几个神经网络,即求解器和预选者,这些神经网络对隐藏的物理约束产生了可解释的神经表示。在经过联合训练之后,求解器网络将近似潜在的候选物,例如部分衍生物,然后将其馈送到稀疏的回归算法中,该算法最初公布了最有可能的PERSIMISIAL PDE,根据信息标准决定。其次,我们提出了基于离散的傅立叶变换(DFT)的Denoising物理信息信息网络(DPINNS),以提供一组最佳的鉴定PDE系数,以符合降低降噪变量。 Denoising Pinns的结构被划分为前沿投影网络和PINN,以前学到的求解器初始化。我们对五个规范PDE的广泛实验确认,该拟议框架为PDE发现提供了一种可靠,可解释的方法,适用于广泛的系统,可能会因噪声而复杂。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
量子计算有望加快科学和工程中的一些最具挑战性问题。已经提出了量子算法,显示了从化学到物流优化的应用中的理论优势。科学和工程中出现的许多问题可以作为一组微分方程重写。用于求解微分方程的量子算法已经示出了容错量计算制度中的可提供的优势,其中深宽的量子电路可用于求解局部微分方程(PDES)的大型线性系统。最近,提出了求解非线性PDE的变分方法也具有近术语量子器件。最有前途的一般方法之一是基于近期科学机器学习领域的发展来解决PDE。我们将近期量子计算机的适用性扩展到更一般的科学机器学习任务,包括从测量数据集发现微分方程。我们使用可分辨率量子电路(DQC)来解决由操作员库参数化的等式,并在数据和方程的组合上执行回归。我们的结果显示了普通模型发现(QMOD)的有希望的路径,在经典和量子机器学习方法之间的界面上。我们在不同系统上展示了成功的参数推断和方程发现,包括二阶,常微分方程和非线性部分微分方程。
translated by 谷歌翻译
数据驱动的PDE的发现最近取得了巨大进展,许多规范的PDE已成功地发现了概念验证。但是,在没有事先参考的情况下,确定最合适的PDE在实际应用方面仍然具有挑战性。在这项工作中,提出了物理信息的信息标准(PIC),以合成发现的PDE的简约和精度。所提出的PIC可在不同的物理场景中七个规范的PDE上获得最新的鲁棒性,并稀疏的数据,这证实了其处理困难情况的能力。该图片还用于从实际的物理场景中从微观模拟数据中发现未开采的宏观管理方程。结果表明,发现的宏观PDE精确且简约,并满足基础的对称性,从而有助于对物理过程的理解和模拟。 PIC的命题可以在发现更广泛的物理场景中发现未透视的管理方程式中PDE发现的实际应用。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
在学习在模拟环境中执行电机任务时,必须允许神经网络探索其动作空间以发现新的潜在可行的解决方案。但是,在具有物理硬件的在线学习场景中,此探索必须受相关的安全考虑因素限制,以避免损坏代理的硬件和环境。我们的目标是通过培训一个神经网络来解决这个问题,我们将参考“安全网络”,以估算受控自主动态系统的吸引力(ROA)。因此,这种安全网络可以用于量化所提出的控制动作的相对安全性,并防止选择破坏性动作。在这里,我们通过培训人工神经网络(ANN)来表示我们的安全网络的发展,以代表几种自主动态系统基准问题的ROA。对该网络的培训是基于Lyapunov理论和神经解的局部微分方程(PDE)的神经解。通过学习近似包含感兴趣系统动态的特殊选择的PDE的粘度解决方案,安全网络学习近似特定函数,类似于Lyapunov函数,其零电平集是ROA的边界。我们培训我们的安全网络,以便在物理信息通知神经网络(PINN)方法的修改版本之后以半监督方式解决这些PDE,利用损失函数,以惩罚与PDE的初始和边界条件的分歧,以及非零残差和变分术语。在未来的工作中,我们打算在电机学习任务期间将这种技术应用于加强学习代理。
translated by 谷歌翻译
科学机器学习已成功应用于计算物理中的逆问题和PDE发现。一个警告有关当前方法的需要是需要大量的(“清洁”)数据,以表征完整的系统响应并发现底层物理模型。贝叶斯方法可能特别有希望克服这些挑战,因为它们对稀疏和嘈杂数据的负面影响自然敏感。在本文中,我们建议使用贝叶斯神经网络(BNN),以便:1)从测量数据(例如,温度,速度场等)恢复完整的系统状态。我们使用Hamiltonian Monte-Carlo来对深层和致密的BNN的后部分布进行样本,并表明可以精确地捕获不同复杂性的物理学,而不会过度拟合。 2)恢复实例化管理物理系统的底层部分微分方程(PDE)的参数。使用训练的BNN作为系统响应的代理,我们生成可能包括控制观察到的系统的潜在PDE的衍生物的数据集,然后在空间和时间的连续衍生物之间执行顺序阈值贝叶斯线性回归(StBLR) ,恢复原始PDE参数。我们利用了BNN输出内的置信区间,并将空间衍生物累积方差引入了Stblr可能性,以减轻高度不确定的衍生数据点的影响;因此,允许更准确的参数发现。我们在应用物理和非线性动力学中逐渐展示了我们的方法。
translated by 谷歌翻译
拟合科学数据的部分微分方程(PDE)可以用可解释的机制来代表各种以数学为导向的受试者的物理定律。从科学数据中发现PDE的数据驱动的发现蓬勃发展,作为对自然界中复杂现象进行建模的新尝试,但是当前实践的有效性通常受数据的稀缺性和现象的复杂性的限制。尤其是,从低质量数据中发现具有高度非线性系数的PDE在很大程度上已经不足。为了应对这一挑战,我们提出了一种新颖的物理学指导学习方法,该方法不仅可以编码观察知识,例如初始和边界条件,而且还包含了基本的物理原理和法律来指导模型优化。我们从经验上证明,所提出的方法对数据噪声和稀疏性更为强大,并且可以将估计误差较大。此外,我们第一次能够发现具有高度非线性系数的PDE。凭借有希望的性能,提出的方法推动了PDE的边界,这可以通过机器学习模型来进行科学发现。
translated by 谷歌翻译
封闭形式的微分方程,包括部分微分方程和高阶普通微分方程,是科学家用来建模和更好地理解自然现象的最重要工具之一。直接从数据中发现这些方程是具有挑战性的,因为它需要在数据中未观察到的各种衍生物之间建模关系(\ textit {equation-data不匹配}),并且涉及在可能的方程式的巨大空间中搜索。当前的方法对方程式的形式做出了强烈的假设,因此未能发现许多知名系统。此外,其中许多通过估计衍生物来解决方程数据不匹配,这使得它们不足以噪音且不经常采样系统。为此,我们提出了D-Cipher,这对测量工件非常健壮,可以发现新的且非常通用的微分方程类别。我们进一步设计了一种新颖的优化程序Collie,以帮助D-Cipher搜索该课程。最后,我们从经验上证明,它可以发现许多众所周知的方程,这些方程超出了当前方法的功能。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
两个不混溶的流体的位移是多孔介质中流体流动的常见问题。这种问题可以作为局部微分方程(PDE)构成通常被称为Buckley-Leverett(B-L)问题。 B-L问题是一种非线性双曲守护法,众所周知,使用传统的数值方法难以解决。在这里,我们使用物理信息的神经网络(Pinns)使用非凸版通量函数来解决前向双曲线B-L问题。本文的贡献是双重的。首先,我们通过将Oleinik熵条件嵌入神经网络残差来提出一种Pinn方法来解决双曲线B-L问题。我们不使用扩散术语(人工粘度)在残留损失中,但我们依靠PDE的强形式。其次,我们使用ADAM优化器与基于残留的自适应细化(RAR)算法,实现不加权的超低损耗。我们的解决方案方法可以精确地捕获冲击前并产生精确的整体解决方案。我们报告了一个2 x 10-2的L2验证误差和1x 10-6的L2损耗。所提出的方法不需要任何额外的正则化或加权损失以获得这种准确的解决方案。
translated by 谷歌翻译
深度学习表明了视觉识别和某些人工智能任务的成功应用。深度学习也被认为是一种强大的工具,具有近似功能的高度灵活性。在本工作中,设计具有所需属性的功能,以近似PDE的解决方案。我们的方法基于后验误差估计,其中解决了错误定位以在神经网络框架内制定误差估计器的伴随问题。开发了一种高效且易于实现的算法,以通过采用双重加权剩余方法来获得多个目标功能的后验误差估计,然后使用神经网络计算原始和伴随解决方案。本研究表明,即使具有相对较少的训练数据,这种基于数据驱动的模型的学习具有卓越的感兴趣量的近似。用数值测试实施例证实了新颖的算法发展。证明了在浅神经网络上使用深神经网络的优点,并且还呈现了收敛增强技术
translated by 谷歌翻译
We present an end-to-end framework to learn partial differential equations that brings together initial data production, selection of boundary conditions, and the use of physics-informed neural operators to solve partial differential equations that are ubiquitous in the study and modeling of physics phenomena. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our physics-informed neural operators to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled partial differential equations. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide the source code, an interactive website to visualize the predictions of our physics informed neural operators, and a tutorial for their use at the Data and Learning Hub for Science.
translated by 谷歌翻译
概率密度演化的推导提供了对许多随机系统及其性能的行为的宝贵洞察力。但是,对于大多数实时应用程序,对概率密度演变的数值确定是一项艰巨的任务。后者是由于所需的时间和空间离散方案引起的,这些方案使大多数计算解决方案过于效率和不切实际。在这方面,有效的计算替代模型的开发至关重要。关于物理受限网络的最新研究表明,可以通过编码对深神经网络的物理洞察力来实现合适的替代物。为此,目前的工作介绍了Deeppdem,它利用物理信息网络的概念通过提出深度学习方法来解决概率密度的演变。 Deeppdem了解随机结构的一般密度演化方程(GDEE)。这种方法为无网格学习方法铺平了道路,该方法可以通过以前的模拟数据解决密度演化问题。此外,它还可以作为优化方案或实时应用程序中任何其他时空点的溶液的有效替代物。为了证明所提出的框架的潜在适用性,研究了两个具有不同激活功能的网络体系结构以及两个优化器。关于三个不同问题的数值实施验证了所提出方法的准确性和功效。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
部分微分方程(PDE)的自动模型发现通常考虑单个实验或数据集以推断底层的控制方程。在实践中,实验在不能简单地平均出来的参数,初始和边界条件下具有固有的自然变性。我们介绍了一个随机的自适应组套索稀疏性估算器,以促进分组的稀疏性并在基于深入的学习PDE发现框架中实施。它允许创建一个学习偏差,其意味着先验的假设,即所有实验都可以用具有潜在不同系数的相同的基础PDE术语解释。我们的实验结果显示了更广泛的PDE,可以从多个高度嘈杂的数据集中找到,通过此分组的稀疏性促销,而不是简单地执行独立的模型发现。
translated by 谷歌翻译
Data-driven identification of differential equations is an interesting but challenging problem, especially when the given data are corrupted by noise. When the governing differential equation is a linear combination of various differential terms, the identification problem can be formulated as solving a linear system, with the feature matrix consisting of linear and nonlinear terms multiplied by a coefficient vector. This product is equal to the time derivative term, and thus generates dynamical behaviors. The goal is to identify the correct terms that form the equation to capture the dynamics of the given data. We propose a general and robust framework to recover differential equations using a weak formulation, for both ordinary and partial differential equations (ODEs and PDEs). The weak formulation facilitates an efficient and robust way to handle noise. For a robust recovery against noise and the choice of hyper-parameters, we introduce two new mechanisms, narrow-fit and trimming, for the coefficient support and value recovery, respectively. For each sparsity level, Subspace Pursuit is utilized to find an initial set of support from the large dictionary. Then, we focus on highly dynamic regions (rows of the feature matrix), and error normalize the feature matrix in the narrow-fit step. The support is further updated via trimming of the terms that contribute the least. Finally, the support set of features with the smallest Cross-Validation error is chosen as the result. A comprehensive set of numerical experiments are presented for both systems of ODEs and PDEs with various noise levels. The proposed method gives a robust recovery of the coefficients, and a significant denoising effect which can handle up to $100\%$ noise-to-signal ratio for some equations. We compare the proposed method with several state-of-the-art algorithms for the recovery of differential equations.
translated by 谷歌翻译
Physics-Informed Neural Networks (PINN) are algorithms from deep learning leveraging physical laws by including partial differential equations together with a respective set of boundary and initial conditions as penalty terms into their loss function. In this work, we observe the significant role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively. To this end, we implement and evaluate different methods aiming at balancing the contributions of multiple terms of the PINNs loss function and their gradients. After reviewing of three existing loss scaling approaches (Learning Rate Annealing, GradNorm and SoftAdapt), we propose a novel self-adaptive loss balancing scheme for PINNs named \emph{ReLoBRaLo} (Relative Loss Balancing with Random Lookback). We extensively evaluate the performance of the aforementioned balancing schemes by solving both forward as well as inverse problems on three benchmark PDEs for PINNs: Burgers' equation, Kirchhoff's plate bending equation and Helmholtz's equation. The results show that ReLoBRaLo is able to consistently outperform the baseline of existing scaling methods in terms of accuracy, while also inducing significantly less computational overhead.
translated by 谷歌翻译