我们表明,将人类的先验知识与端到端学习相结合可以通过引入基于零件的对象分类模型来改善深神经网络的鲁棒性。我们认为,更丰富的注释形式有助于指导神经网络学习更多可靠的功能,而无需更多的样本或更大的模型。我们的模型将零件分割模型与一个微小的分类器结合在一起,并经过训练的端到端,以同时将对象分割为各个部分,然后对分段对象进行分类。从经验上讲,与所有三个数据集的Resnet-50基线相比,我们的基于部分的模型既具有更高的精度和更高的对抗性鲁棒性。例如,鉴于相同的鲁棒性,我们部分模型的清洁准确性高达15个百分点。我们的实验表明,这些模型还减少了纹理偏见,并对共同的腐败和虚假相关性产生更好的鲁棒性。该代码可在https://github.com/chawins/adv-part-model上公开获得。
translated by 谷歌翻译
Adversarial attacks can easily fool object recognition systems based on deep neural networks (DNNs). Although many defense methods have been proposed in recent years, most of them can still be adaptively evaded. One reason for the weak adversarial robustness may be that DNNs are only supervised by category labels and do not have part-based inductive bias like the recognition process of humans. Inspired by a well-known theory in cognitive psychology -- recognition-by-components, we propose a novel object recognition model ROCK (Recognizing Object by Components with human prior Knowledge). It first segments parts of objects from images, then scores part segmentation results with predefined human prior knowledge, and finally outputs prediction based on the scores. The first stage of ROCK corresponds to the process of decomposing objects into parts in human vision. The second stage corresponds to the decision process of the human brain. ROCK shows better robustness than classical recognition models across various attack settings. These results encourage researchers to rethink the rationality of currently widely-used DNN-based object recognition models and explore the potential of part-based models, once important but recently ignored, for improving robustness.
translated by 谷歌翻译
积极的数据增强是视觉变压器(VIT)的强大泛化能力的关键组成部分。一种这样的数据增强技术是对抗性培训;然而,许多先前的作品表明,这通常会导致清洁的准确性差。在这项工作中,我们展示了金字塔对抗训练,这是一种简单有效的技术来提高韦维尔的整体性能。我们将其与“匹配”辍学和随机深度正则化配对,这采用了干净和对抗样品的相同辍学和随机深度配置。类似于Advprop的CNNS的改进(不直接适用于VIT),我们的金字塔对抗性训练会破坏分销准确性和vit和相关架构的分配鲁棒性之间的权衡。当Imagenet-1K数据训练时,它导致ImageNet清洁准确性的182美元的vit-B模型的精确度,同时由7美元的稳健性指标同时提高性能,从$ 1.76 \%$至11.45 \%$。我们为Imagenet-C(41.4 MCE),Imagenet-R($ 53.92 \%$),以及Imagenet-Sketch(41.04美元\%$)的新的最先进,只使用vit-b / 16骨干和我们的金字塔对抗训练。我们的代码将在接受时公开提供。
translated by 谷歌翻译
神经网络对攻击的缺乏鲁棒性引起了对安全敏感环境(例如自动驾驶汽车)的担忧。虽然许多对策看起来可能很有希望,但只有少数能够承受严格的评估。使用随机变换(RT)的防御能力显示出令人印象深刻的结果,尤其是Imagenet上的Bart(Raff等,2019)。但是,这种防御尚未经过严格评估,使其稳健性的理解不足。它们的随机特性使评估更具挑战性,并使对确定性模型的许多拟议攻击不可应用。首先,我们表明BART评估中使用的BPDA攻击(Athalye等,2018a)无效,可能高估了其稳健性。然后,我们尝试通过明智的转换和贝叶斯优化来调整其参数来构建最强的RT防御。此外,我们创造了最强烈的攻击来评估我们的RT防御。我们的新攻击极大地胜过基线,与常用的EOT攻击减少19%相比,将准确性降低了83%($ 4.3 \ times $改善)。我们的结果表明,在Imagenette数据集上的RT防御(ImageNet的十级子集)在对抗性示例上并不强大。进一步扩展研究,我们使用新的攻击来对抗RT防御(称为Advrt),从而获得了巨大的稳健性增长。代码可从https://github.com/wagner-group/demystify-random-transform获得。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
人类严重依赖于形状信息来识别对象。相反,卷积神经网络(CNNS)偏向于纹理。这也许是CNNS易受对抗性示例的影响的主要原因。在这里,我们探索如何将偏差纳入CNN,以提高其鲁棒性。提出了两种算法,基于边缘不变,以中等难以察觉的扰动。在第一个中,分类器在具有边缘图作为附加信道的图像上进行前列地培训。在推断时间,边缘映射被重新计算并连接到图像。在第二算法中,训练了条件GaN,以将边缘映射从干净和/或扰动图像转换为清洁图像。推断在与输入的边缘图对应的生成图像上完成。超过10个数据集的广泛实验证明了算法对FGSM和$ \ ELL_ infty $ PGD-40攻击的有效性。此外,我们表明a)边缘信息还可以使其他对抗训练方法有益,并且B)在边缘增强输入上培训的CNNS对抗自然图像损坏,例如运动模糊,脉冲噪声和JPEG压缩,而不是仅培训的CNNS RGB图像。从更广泛的角度来看,我们的研究表明,CNN不会充分占对鲁棒性至关重要的图像结构。代码可用:〜\ url {https://github.com/aliborji/shapedefense.git}。
translated by 谷歌翻译
我们介绍了几个新的数据集即想象的A / O和Imagenet-R以及合成环境和测试套件,我们称为CAOS。 Imagenet-A / O允许研究人员专注于想象成剩余的盲点。由于追踪稳健的表示,以特殊创建了ImageNet-R,因为表示不再简单地自然,而是包括艺术和其他演绎。 Caos Suite由Carla Simulator构建,允许包含异常物体,可以创建可重复的合成环境和用于测试稳健性的场景。所有数据集都是为测试鲁棒性和衡量鲁棒性的衡量进展而创建的。数据集已用于各种其他作品中,以衡量其具有鲁棒性的自身进步,并允许切向进展,这些进展不会完全关注自然准确性。鉴于这些数据集,我们创建了几种旨在推进鲁棒性研究的新方法。我们以最大Logit的形式和典型程度的形式构建简单的基线,并以深度的形式创建新的数据增强方法,从而提高上述基准。最大Logit考虑Logit值而不是SoftMax操作后的值,而微小的变化会产生明显的改进。典型程分将输出分布与类的后部分布进行比较。我们表明,除了分段任务之外,这将提高对基线的性能。猜测可能在像素级别,像素的语义信息比类级信息的语义信息不太有意义。最后,新的Deepaulment的新增强技术利用神经网络在彻底不同于先前使用的传统几何和相机的转换的图像上创建增强。
translated by 谷歌翻译
作为研究界,我们仍然缺乏对对抗性稳健性的进展的系统理解,这通常使得难以识别训练强大模型中最有前途的想法。基准稳健性的关键挑战是,其评估往往是出错的导致鲁棒性高估。我们的目标是建立对抗性稳健性的标准化基准,尽可能准确地反映出考虑在合理的计算预算范围内所考虑的模型的稳健性。为此,我们首先考虑图像分类任务并在允许的型号上引入限制(可能在将来宽松)。我们评估了与AutoAtrack的对抗鲁棒性,白和黑箱攻击的集合,最近在大规模研究中显示,与原始出版物相比,改善了几乎所有稳健性评估。为防止对自动攻击进行新防御的过度适应,我们欢迎基于自适应攻击的外部评估,特别是在自动攻击稳健性潜在高估的地方。我们的排行榜,托管在https://robustbench.github.io/,包含120多个模型的评估,并旨在反映在$ \ ell_ \ infty $的一套明确的任务上的图像分类中的当前状态 - 和$ \ ell_2 $ -Threat模型和共同腐败,未来可能的扩展。此外,我们开源源是图书馆https://github.com/robustbench/robustbench,可以提供对80多个强大模型的统一访问,以方便他们的下游应用程序。最后,根据收集的模型,我们分析了稳健性对分布换档,校准,分配检测,公平性,隐私泄漏,平滑度和可转移性的影响。
translated by 谷歌翻译
深度神经网络的图像分类容易受到对抗性扰动的影响。图像分类可以通过在输入图像中添加人造小且不可察觉的扰动来轻松愚弄。作为最有效的防御策略之一,提出了对抗性训练,以解决分类模型的脆弱性,其中创建了对抗性示例并在培训期间注入培训数据中。在过去的几年中,对分类模型的攻击和防御进行了深入研究。语义细分作为分类的扩展,最近也受到了极大的关注。最近的工作表明,需要大量的攻击迭代来创建有效的对抗性示例来欺骗分割模型。该观察结果既可以使鲁棒性评估和对分割模型的对抗性培训具有挑战性。在这项工作中,我们提出了一种称为SEGPGD的有效有效的分割攻击方法。此外,我们提供了收敛分析,以表明在相同数量的攻击迭代下,提出的SEGPGD可以创建比PGD更有效的对抗示例。此外,我们建议将SEGPGD应用于分割对抗训练的基础攻击方法。由于SEGPGD可以创建更有效的对抗性示例,因此使用SEGPGD的对抗训练可以提高分割模型的鲁棒性。我们的建议还通过对流行分割模型体系结构和标准分段数据集进行了验证。
translated by 谷歌翻译
在本文中,我们询问视觉变形金刚(VIT)是否可以作为改善机器学习模型对抗逃避攻击的对抗性鲁棒性的基础结构。尽管较早的作品集中在改善卷积神经网络上,但我们表明VIT也非常适合对抗训练以实现竞争性能。我们使用自定义的对抗训练配方实现了这一目标,该配方是在Imagenet数据集的一部分上使用严格的消融研究发现的。与卷积相比,VIT的规范培训配方建议强大的数据增强,部分是为了补偿注意力模块的视力归纳偏置。我们表明,该食谱在用于对抗训练时可实现次优性能。相比之下,我们发现省略所有重型数据增强,并添加一些额外的零件($ \ varepsilon $ -Warmup和更大的重量衰减),从而大大提高了健壮的Vits的性能。我们表明,我们的配方在完整的Imagenet-1k上概括了不同类别的VIT体系结构和大规模模型。此外,调查了模型鲁棒性的原因,我们表明,在使用我们的食谱时,在训练过程中产生强烈的攻击更加容易,这会在测试时提高鲁棒性。最后,我们通过提出一种量化对抗性扰动的语义性质并强调其与模型的鲁棒性的相关性来进一步研究对抗训练的结果。总体而言,我们建议社区应避免将VIT的规范培训食谱转换为在对抗培训的背景下进行强大的培训和重新思考常见的培训选择。
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
对象检测在许多安全关键系统中播放关键作用。对抗性补丁攻击,在物理世界中易于实施,对最先进的对象探测器构成严重威胁。开发针对补丁攻击的对象探测器的可靠防御是至关重要的,但严重解读。在本文中,我们提出了段和完整的防御(SAC),是通过检测和消除对抗性补丁来保护对象探测器的一般框架。我们首先培训一个补丁分段器,输出补丁掩码,提供对抗性补丁的像素级定位。然后,我们提出了一种自我逆势训练算法来强制补丁分段器。此外,我们设计了一种坚固的形状完成算法,保证了给定贴片分段器的输出在地面真理贴片掩模的某个汉明距离的图像中从图像中移除整个修补程序。我们对Coco和Xview Datasets的实验表明,即使在具有清洁图像上没有性能下降的强大自适应攻击下,SAC也可以实现优越的稳健性,并且概括到未遵守的补丁形状,攻击预算和看不见的攻击方法。此外,我们介绍了股份模型数据集,该数据集增强了具有对抗修补程序的像素级注释的杏子数据集。我们展示SAC可以显着降低物理补丁攻击的目标攻击成功率。
translated by 谷歌翻译
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples.We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [41] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%) and Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [24] which is trained with 3.5B Instagram images (∼3000× more than ImageNet) and ∼9.4× more parameters. Models are available at https://github.com/tensorflow/tpu/tree/ master/models/official/efficientnet.
translated by 谷歌翻译
自我监督学习的最新进展证明了多种视觉任务的有希望的结果。高性能自我监督方法中的一个重要成分是通过培训模型使用数据增强,以便在嵌入空间附近的相同图像的不同增强视图。然而,常用的增强管道整体地对待图像,忽略图像的部分的语义相关性-e.g。主题与背景 - 这可能导致学习杂散相关性。我们的工作通过调查一类简单但高度有效的“背景增强”来解决这个问题,这鼓励模型专注于语义相关内容,劝阻它们专注于图像背景。通过系统的调查,我们表明背景增强导致在各种任务中跨越一系列最先进的自我监督方法(MOCO-V2,BYOL,SWAV)的性能大量改进。 $ \ SIM $ + 1-2%的ImageNet收益,使得与监督基准的表现有关。此外,我们发现有限标签设置的改进甚至更大(高达4.2%)。背景技术增强还改善了许多分布换档的鲁棒性,包括天然对抗性实例,想象群-9,对抗性攻击,想象成型。我们还在产生了用于背景增强的显着掩模的过程中完全无监督的显着性检测进展。
translated by 谷歌翻译
深神网络的对象探测器正在不断发展,并用于多种应用程序,每个应用程序都有自己的要求集。尽管关键安全应用需要高准确性和可靠性,但低延迟任务需要资源和节能网络。不断提出了实时探测器,在高影响现实世界中是必需的,但是它们过分强调了准确性和速度的提高,而其他功能(例如多功能性,鲁棒性,资源和能源效率)则被省略。现有网络的参考基准不存在,设计新网络的标准评估指南也不存在,从而导致比较模棱两可和不一致的比较。因此,我们对广泛的数据集进行了多个实时探测器(基于锚点,关键器和变压器)的全面研究,并报告了一系列广泛指标的结果。我们还研究了变量,例如图像大小,锚固尺寸,置信阈值和架构层对整体性能的影响。我们分析了检测网络的鲁棒性,以防止分配变化,自然腐败和对抗性攻击。此外,我们提供了校准分析来评估预测的可靠性。最后,为了强调现实世界的影响,我们对自动驾驶和医疗保健应用进行了两个独特的案例研究。为了进一步衡量关键实时应用程序中网络的能力,我们报告了在Edge设备上部署检测网络后的性能。我们广泛的实证研究可以作为工业界对现有网络做出明智选择的指南。我们还希望激发研究社区的设计和评估网络的新方向,该网络着重于更大而整体的概述,以实现深远的影响。
translated by 谷歌翻译
对共同腐败的稳健性的文献表明对逆势培训是否可以提高这种环境的性能,没有达成共识。 First, we show that, when used with an appropriately selected perturbation radius, $\ell_p$ adversarial training can serve as a strong baseline against common corruptions improving both accuracy and calibration.然后,我们解释了为什么对抗性训练比具有简单高斯噪声的数据增强更好地表现,这被观察到是对共同腐败的有意义的基线。与此相关,我们确定了高斯增强过度适用于用于培训的特定标准偏差的$ \ sigma $ -oviting现象,这对培训具有显着不利影响的普通腐败精度。我们讨论如何缓解这一问题,然后如何通过学习的感知图像贴片相似度引入对抗性训练的有效放松来进一步增强$ \ ell_p $普发的培训。通过对CiFar-10和Imagenet-100的实验,我们表明我们的方法不仅改善了$ \ ell_p $普发的培训基线,而且还有累积的收益与Augmix,Deepaulment,Ant和Sin等数据增强方法,导致普通腐败的最先进的表现。我们的实验代码在HTTPS://github.com/tml-epfl/adv-training - 窗子上公开使用。
translated by 谷歌翻译
Self-supervision provides effective representations for downstream tasks without requiring labels. However, existing approaches lag behind fully supervised training and are often not thought beneficial beyond obviating or reducing the need for annotations. We find that self-supervision can benefit robustness in a variety of ways, including robustness to adversarial examples, label corruption, and common input corruptions. Additionally, self-supervision greatly benefits out-of-distribution detection on difficult, near-distribution outliers, so much so that it exceeds the performance of fully supervised methods. These results demonstrate the promise of self-supervision for improving robustness and uncertainty estimation and establish these tasks as new axes of evaluation for future self-supervised learning research.
translated by 谷歌翻译
Any classifier can be "smoothed out" under Gaussian noise to build a new classifier that is provably robust to $\ell_2$-adversarial perturbations, viz., by averaging its predictions over the noise via randomized smoothing. Under the smoothed classifiers, the fundamental trade-off between accuracy and (adversarial) robustness has been well evidenced in the literature: i.e., increasing the robustness of a classifier for an input can be at the expense of decreased accuracy for some other inputs. In this paper, we propose a simple training method leveraging this trade-off to obtain robust smoothed classifiers, in particular, through a sample-wise control of robustness over the training samples. We make this control feasible by using "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input. Specifically, we differentiate the training objective depending on this proxy to filter out samples that are unlikely to benefit from the worst-case (adversarial) objective. Our experiments show that the proposed method, despite its simplicity, consistently exhibits improved certified robustness upon state-of-the-art training methods. Somewhat surprisingly, we find these improvements persist even for other notions of robustness, e.g., to various types of common corruptions.
translated by 谷歌翻译
最前馈卷积神经网络的花费大约为每像素相同的努力。然而,人的视觉识别是眼球运动和空间的关注,我们将在不同区域内对象的几个一瞥之间的相互作用。通过这种观察的启发,我们提出了一个终端到年底可训练多掠影网络(MGNet)旨在解决高计算的挑战和基于反复向下抽样的注意机制缺乏健壮性其中。具体而言,图像的MGNet依次选择任务相关的区域进行对焦,然后自适应地结合为最终的预测所有收集的信息。 MGNet表示反对敌对攻击和常见的腐败与计算量小强阻力。此外,MGNet本质上更可解释的,因为它明确地告诉我们它的重点在每次迭代中。我们对ImageNet100实验表明,经常性下采样关注机制的潜力,以提高单馈方式。例如,MGNet提高平均常用腐败4.76%的准确率只有36.9%,计算成本。此外,虽然基线招致的精度下降至7.6%,MGNet设法保持在相同的PGD攻击强度44.2%的准确度与RESNET-50骨干。我们的代码可在https://github.com/siahuat0727/MGNet。
translated by 谷歌翻译
由明确的反对派制作的对抗例子在机器学习中引起了重要的关注。然而,潜在虚假朋友带来的安全风险基本上被忽视了。在本文中,我们揭示了虚伪的例子的威胁 - 最初被错误分类但是虚假朋友扰乱的投入,以强迫正确的预测。虽然这种扰动的例子似乎是无害的,但我们首次指出,它们可能是恶意地用来隐瞒评估期间不合格(即,不如所需)模型的错误。一旦部署者信任虚伪的性能并在真实应用程序中应用“良好的”模型,即使在良性环境中也可能发生意外的失败。更严重的是,这种安全风险似乎是普遍存在的:我们发现许多类型的不合标准模型易受多个数据集的虚伪示例。此外,我们提供了第一次尝试,以称为虚伪风险的公制表征威胁,并试图通过一些对策来规避它。结果表明对策的有效性,即使在自适应稳健的培训之后,风险仍然是不可忽视的。
translated by 谷歌翻译