现有的全景深度估计方法基于卷积神经网络(CNN)的重点是消除全景畸变,由于CNN中的固定接受场而无法有效地感知全景结构。本文提出了全景变压器(名为PanoFormer),以估计全景图像中的深度,并带有球形域,可学习的令牌流和全景特定指标的切线斑块。特别是,我们将球形切线结构域上的斑块划分为令牌,以减少全景畸变的负面影响。由于几何结构对于深度估计是必不可少的,因此自我发项式模块通过额外的可学习令牌流重新设计。此外,考虑到球形域的特征,我们提出了两个全景特异性指标,以全面评估全景深度估计模型的性能。广泛的实验表明,我们的方法显着优于最先进的方法(SOTA)方法。此外,可以有效地扩展提出的方法以求解语义全景分割,这是类似的Pixel2像素任务。代码将可用。
translated by 谷歌翻译
对于单眼360图像,深度估计是一个具有挑战性的,因为失真沿纬度增加。为了感知失真,现有方法致力于设计深层且复杂的网络体系结构。在本文中,我们提供了一种新的观点,该视角为360图像构建了可解释且稀疏的表示形式。考虑到几何结构在深度估计中的重要性,我们利用Contourlet变换来捕获光谱域中的显式几何提示,并将其与空间域中的隐含提示集成在一起。具体而言,我们提出了一个由卷积神经网络和Contourlet变换分支组成的神经轮廓网络。在编码器阶段,我们设计了一个空间光谱融合模块,以有效融合两种类型的提示。与编码器相反,我们采用了逆向方形变换,并通过学习的低通子带和带通道的定向子带来构成解码器中的深度。在三个流行的全景图像数据集上进行的实验表明,所提出的方法的表现优于最先进的方案,其收敛速度更快。代码可在https://github.com/zhijieshen-bjtu/neural-contourlet-network-for-mode上找到。
translated by 谷歌翻译
深度估计是近年来全景图像3D重建的关键步骤。 Panorama图像保持完整的空间信息,但与互联的投影引入失真。在本文中,我们提出了一种基于自适应组合扩张的卷积的ACDNet,以预测单眼地全景图像的密集深度图。具体地,我们将卷积核与不同的扩张相结合,以延长昼夜投影中的接收领域。同时,我们介绍了一个自适应渠道 - 明智的融合模块,总结了特征图,并在频道的接收领域中获得不同的关注区域。由于利用通道的注意力构建自适应通道 - 明智融合模块,网络可以有效地捕获和利用跨通道上下文信息。最后,我们对三个数据集(虚拟和现实世界)进行深度估计实验,实验结果表明,我们所提出的ACDNET基本上优于当前的最先进(SOTA)方法。我们的代码和模型参数在https://github.com/zcq15/acdnet中访问。
translated by 谷歌翻译
自我监督的单眼深度估计是一种有吸引力的解决方案,不需要难以供应的深度标签进行训练。卷积神经网络(CNN)最近在这项任务中取得了巨大成功。但是,他们的受欢迎的领域有限地限制了现有的网络体系结构,以便在本地进行推理,从而抑制了自我监督范式的有效性。鉴于Vision Transformers(VIT)最近取得的成功,我们提出了Monovit,这是一个崭新的框架,结合了VIT模型支持的全球推理以及自我监督的单眼深度估计的灵活性。通过将普通的卷积与变压器块相结合,我们的模型可以在本地和全球范围内推理,从而在较高的细节和准确性上产生深度预测,从而使MonoVit可以在已建立的Kitti数据集中实现最先进的性能。此外,Monovit证明了其在其他数据集(例如Make3D和Drivingstereo)上的出色概括能力。
translated by 谷歌翻译
最近,基于水平表示的全景语义分割方法优于基于投影的解决方案,因为可以通过在垂直方向上压缩球形数据来有效地消除畸变。但是,这些方法忽略了之前的失真分布,并且仅限于不平衡的接收场,例如,接收场在垂直方向上足够,并且在水平方向上不足。不同的是,沿另一个方向压缩的垂直表示可以提供隐式失真先验,并扩大水平接收场。在本文中,我们结合了两种不同的表示,并从互补的角度提出了一种新颖的360 {\ deg}语义分割解决方案。我们的网络包括三个模块:特征提取模块,一个双向压缩模块和一个集合解码模块。首先,我们从Panorama提取多尺度功能。然后,设计一个双向压缩模块,将特征压缩为两个互补的低维表示,这些表示提供了内容感知和失真。此外,为了促进双向特征的融合,我们在合奏解码模块中设计了独特的自我蒸馏策略,以增强不同特征的相互作用并进一步提高性能。实验结果表明,我们的方法的表现优于最先进的解决方案,在定量评估上至少提高了10 \%的改进,同时显示出视觉外观上最佳性能。
translated by 谷歌翻译
全景图像可以同时展示周围环境的完整信息,并且在虚拟旅游,游戏,机器人技术等方面具有许多优势。但是,全景深度估计的进度无法完全解决由常用的投射方法引起的失真和不连续性问题。本文提出了SphereDepth,这是一种新型的全景深度估计方法,该方法可直接预测球形网格的深度而无需投影预处理。核心思想是建立全景图像与球形网格之间的关系,然后使用深层神经网络在球形域上提取特征以预测深度。为了解决高分辨率全景数据带来的效率挑战,我们介绍了两个超参数,以平衡推理速度和准确性。在三个公共全景数据集中验证,SphereDepth通过全景深度估算的最新方法实现了可比的结果。从球形域设置中受益,球形部可以产生高质量的点云,并显着缓解失真和不连续性问题。
translated by 谷歌翻译
由于球形摄像机的兴起,单眼360深度估计成为许多应用(例如自主系统)的重要技术。因此,提出了针对单眼360深度估计的最新框架,例如Bifuse中的双预测融合。为了训练这样的框架,需要大量全景以及激光传感器捕获的相应深度地面真相,这极大地增加了数据收集成本。此外,由于这样的数据收集过程是耗时的,因此将这些方法扩展到不同场景的可扩展性成为一个挑战。为此,从360个视频中进行单眼深度估计网络的自我培训是减轻此问题的一种方法。但是,没有现有的框架将双投射融合融合到自我训练方案中,这极大地限制了自我监督的性能,因为Bi-Prodoction Fusion可以利用来自不同投影类型的信息。在本文中,我们建议Bifuse ++探索双投影融合和自我训练场景的组合。具体来说,我们提出了一个新的融合模块和对比度感知的光度损失,以提高Bifuse的性能并提高对现实世界视频的自我训练的稳定性。我们在基准数据集上进行了监督和自我监督的实验,并实现最先进的性能。
translated by 谷歌翻译
光流估计是自动驾驶和机器人系统系统中的一项基本任务,它可以在时间上解释流量场景。自动驾驶汽车显然受益于360 {\ deg}全景传感器提供的超宽视野(FOV)。但是,由于全景相机的独特成像过程,专为针孔图像设计的模型不会令人满意地概括为360 {\ deg}全景图像。在本文中,我们提出了一个新颖的网络框架 - panoflow,以学习全景图像的光流。为了克服全景转化中等应角投影引起的扭曲,我们设计了一种流动失真增强(FDA)方法,其中包含径向流量失真(FDA-R)或等骨流量失真(FDA-E)。我们进一步研究了全景视频的环状光流的定义和特性,并通过利用球形图像的环状来推断360 {\ deg}光流并将大型位移转换为相对小的位移,从而提出了环状流量估计(CFE)方法移位。 Panoflow适用于任何现有的流量估计方法,并从狭窄的FOL流量估计的进度中受益。此外,我们创建并释放基于CARLA的合成全景数据集Flow360,以促进训练和定量分析。 Panoflow在公共Omniflownet和已建立的Flow360基准中实现了最先进的表现。我们提出的方法将Flow360上的端点误差(EPE)降低了27.3%。在Omniflownet上,Panoflow获得了3.17像素的EPE,从最佳发布的结果中降低了55.5%的误差。我们还通过收集工具和公共现实世界中的全球数据集对我们的方法进行定性验证我们的方法,这表明对现实世界导航应用程序的强大潜力和稳健性。代码和数据集可在https://github.com/masterhow/panoflow上公开获取。
translated by 谷歌翻译
在本文中,我们的目标是在各种照明条件下解决复杂场景中一致的深度预测问题。现有的基于RGB-D传感器或虚拟渲染的室内数据集具有两个关键限制 - 稀疏深度映射(NYU深度V2)和非现实照明(Sun CG,SceneNet RGB-D)。我们建议使用Internet 3D室内场景并手动调整其照明,以呈现照片逼真的RGB照片及其相应的深度和BRDF地图,获取名为Vari DataSet的新室内深度数据集。通过在编码特征上应用深度可分离扩张的卷积来处理全局信息并减少参数,提出了一个名为DCA的简单卷积块。我们对这些扩张的特征进行横向关注,以保留不同照明下深度预测的一致性。通过将其与Vari数据集上的当前最先进的方法进行比较来评估我们的方法,并且在我们的实验中观察到显着改善。我们还开展了融合研究,Finetune我们的NYU深度V2模型,并评估了真实数据,以进一步验证我们的DCA块的有效性。代码,预先训练的权重和vari数据集是开放的。
translated by 谷歌翻译
Semi-Supervised Learning (SSL) has recently accomplished successful achievements in various fields such as image classification, object detection, and semantic segmentation, which typically require a lot of labour to construct ground-truth. Especially in the depth estimation task, annotating training data is very costly and time-consuming, and thus recent SSL regime seems an attractive solution. In this paper, for the first time, we introduce a novel framework for semi-supervised learning of monocular depth estimation networks, using consistency regularization to mitigate the reliance on large ground-truth depth data. We propose a novel data augmentation approach, called K-way disjoint masking, which allows the network for learning how to reconstruct invisible regions so that the model not only becomes robust to perturbations but also generates globally consistent output depth maps. Experiments on the KITTI and NYU-Depth-v2 datasets demonstrate the effectiveness of each component in our pipeline, robustness to the use of fewer and fewer annotated images, and superior results compared to other state-of-the-art, semi-supervised methods for monocular depth estimation. Our code is available at https://github.com/KU-CVLAB/MaskingDepth.
translated by 谷歌翻译
透明的物体广泛用于工业自动化和日常生活中。但是,强大的视觉识别和对透明物体的感知一直是一个主要挑战。目前,由于光的折射和反射,大多数商用级深度摄像机仍然不擅长感知透明物体的表面。在这项工作中,我们从单个RGB-D输入中提出了一种基于变压器的透明对象深度估计方法。我们观察到,变压器的全球特征使得更容易提取上下文信息以执行透明区域的深度估计。此外,为了更好地增强细粒度的特征,功能融合模块(FFM)旨在帮助连贯的预测。我们的经验证据表明,与以前的最新基于卷积的数据集相比,我们的模型在最近的流行数据集中有了重大改进,例如RMSE增长25%,RER增长21%。广泛的结果表明,我们的基于变压器的模型可以更好地汇总对象的RGB和不准确的深度信息,以获得更好的深度表示。我们的代码和预培训模型将在https://github.com/yuchendoudou/tode上找到。
translated by 谷歌翻译
The exploration of mutual-benefit cross-domains has shown great potential toward accurate self-supervised depth estimation. In this work, we revisit feature fusion between depth and semantic information and propose an efficient local adaptive attention method for geometric aware representation enhancement. Instead of building global connections or deforming attention across the feature space without restraint, we bound the spatial interaction within a learnable region of interest. In particular, we leverage geometric cues from semantic information to learn local adaptive bounding boxes to guide unsupervised feature aggregation. The local areas preclude most irrelevant reference points from attention space, yielding more selective feature learning and faster convergence. We naturally extend the paradigm into a multi-head and hierarchic way to enable the information distillation in different semantic levels and improve the feature discriminative ability for fine-grained depth estimation. Extensive experiments on the KITTI dataset show that our proposed method establishes a new state-of-the-art in self-supervised monocular depth estimation task, demonstrating the effectiveness of our approach over former Transformer variants.
translated by 谷歌翻译
单眼深度估计和语义分割是场景理解的两个基本目标。由于任务交互的优点,许多作品研究了联合任务学习算法。但是,大多数现有方法都无法充分利用语义标签,忽略提供的上下文结构,并且仅使用它们来监督分段拆分的预测,这限制了两个任务的性能。在本文中,我们提出了一个网络注入了上下文信息(CI-Net)来解决问题。具体而言,我们在编码器中引入自我关注块以产生注意图。通过由语义标签创建的理想注意图的监督,网络嵌入了上下文信息,使得它可以更好地理解场景并利用相关特征来进行准确的预测。此外,构造了一个特征共享模块,以使任务特征深入融合,并且设计了一致性损耗,以使特征相互引导。我们在NYU-Deaft-V2和Sun-RGBD数据集上评估所提出的CI-Net。实验结果验证了我们所提出的CI-Net可以有效提高语义分割和深度估计的准确性。
translated by 谷歌翻译
多任务密集的场景理解是一个蓬勃发展的研究领域,需要同时对与像素预测的一系列相关任务进行推理。由于卷积操作的大量利用,大多数现有作品都会遇到当地建模的严重限制,而在全球空间位置和多任务背景中学习相互作用和推断对于此问题至关重要。在本文中,我们提出了一种新颖的端到端倒立金字塔多任务变压器(Invpt),以在统一框架中对空间位置和多个任务进行同时建模。据我们所知,这是探索设计变压器结构的第一项工作,以用于多任务密集的预测以进行场景理解。此外,人们广泛证明,较高的空间分辨率对密集的预测非常有益,而对于现有的变压器来说,由于对大空间大小的巨大复杂性,现有变形金刚更深入地采用更高的分辨率。 Invpt提出了一个有效的上移动器块,以逐渐增加分辨率学习多任务特征交互,这还结合了有效的自我发言消息传递和多规模特征聚合,以高分辨率产生特定于任务的预测。我们的方法分别在NYUD-V2和PASCAL-CONTEXT数据集上实现了卓越的多任务性能,并且显着优于先前的最先前。该代码可在https://github.com/prismformore/invpt上获得
translated by 谷歌翻译
自我监督的学习已经为单眼深度估计显示出非常有希望的结果。场景结构和本地细节都是高质量深度估计的重要线索。最近的作品遭受了场景结构的明确建模,并正确处理细节信息,这导致了预测结果中的性能瓶颈和模糊人工制品。在本文中,我们提出了具有两个有效贡献的通道 - 明智的深度估计网络(Cadepth-Net):1)结构感知模块采用自我关注机制来捕获远程依赖性并聚合在信道中的识别特征尺寸,明确增强了场景结构的感知,获得了更好的场景理解和丰富的特征表示。 2)细节强调模块重新校准通道 - 方向特征映射,并选择性地强调信息性功能,旨在更有效地突出至关重要的本地细节信息和熔断器不同的级别功能,从而更精确,更锐化深度预测。此外,广泛的实验验证了我们方法的有效性,并表明我们的模型在基蒂基准和Make3D数据集中实现了最先进的结果。
translated by 谷歌翻译
近年来,尤其是在户外环境中,自我监督的单眼深度估计已取得了重大进展。但是,在大多数现有数据被手持设备捕获的室内场景中,深度预测结果无法满足。与室外环境相比,使用自我监督的方法估算室内环境的单眼视频深度,导致了两个额外的挑战:(i)室内视频序列的深度范围在不同的框架上有很大变化,使深度很难进行。网络以促进培训的一致深度线索; (ii)用手持设备记录的室内序列通常包含更多的旋转运动,这使姿势网络难以预测准确的相对摄像头姿势。在这项工作中,我们通过对这些挑战进行特殊考虑并巩固了一系列良好实践,以提高自我监督的单眼深度估计室内环境的表现,从而提出了一种新颖的框架单声道++。首先,提出了具有基于变压器的比例回归网络的深度分解模块,以明确估算全局深度尺度因子,预测的比例因子可以指示最大深度值。其次,我们不像以前的方法那样使用单阶段的姿势估计策略,而是建议利用残留姿势估计模块来估计相对摄像机在连续迭代的跨帧中构成。第三,为了为我们的残留姿势估计模块纳入广泛的坐标指南,我们建议直接在输入上执行坐标卷积编码,以实现姿势网络。提出的方法在各种基准室内数据集(即Euroc Mav,Nyuv2,扫描仪和7片)上进行了验证,证明了最先进的性能。
translated by 谷歌翻译
在本文中,我们制定了一个潜在的有价值的全景深度完成(PDC)任务,因为全景3D摄像机通常会产生360 {\ deg}深度,而在复杂场景中缺少数据。它的目标是从原始的稀疏图像和全景RGB图像中恢复密集的全景深度。为了处理PDC任务,我们训练一个深度网络,该网络将深度和图像作为密集的全景深度恢复的输入。但是,由于其非凸目标函数,它需要面对网络参数的具有挑战性的优化问题。为了解决这个问题,我们提出了一种简单而有效的方法,称为m {^3} pt:多模式掩盖的预训练。具体而言,在预训练期间,我们同时覆盖了全景RGB图像和通过共享随机掩码的稀疏深度的斑块,然后重建掩盖区域中的稀疏深度。据我们所知,这是我们第一次在多模式视觉任务中展示蒙版预训练的有效性,而不是蒙版自动编码器(MAE)解决的单模式任务。与MAE进行微调完全丢弃了预训练的解码器部分,在我们的M $^{3} $ pt中的预训练和微调阶段之间没有建筑差异,因为它们在预测密度方面只有不同,这有可能使转移学习更加方便和有效。广泛的实验验证了三个全景数据集上M {^3} PT的有效性。值得注意的是,我们在RMSE中平均将最先进的基线提高了26.2%,MRE的51.7%,MAE为49.7%,在三个基准数据集中将RMSelog的RMSelog在37.5%中提高了37.5%。
translated by 谷歌翻译
旨在恢复图像中影子区域的原始强度,并使它们与剩余的非阴影区域兼容,而没有跟踪,删除阴影是一个非常具有挑战性的问题,使许多下游图像/视频相关的任务受益。最近,变形金刚通过捕获全局像素相互作用来显示它们在各种应用中的强大能力,并且这种能力在删除阴影时非常可取。然而,由于以下两个原因,应用变压器促进阴影去除是非平凡的:1)修补程序操作不适用于由于不规则的阴影形状而导致阴影去除; 2)阴影去除只需要从非阴影区域到阴影区域的单向交互,而不是图像中所有像素之间的共同双向相互作用。在本文中,我们提出了一种新型的跨区域变压器,即CRFormer,用于去除阴影,它与现有变压器的不同之处仅通过考虑从非阴影区域到阴影区域的像素相互作用而不将图像分为斑块。这是通过精心设计的区域感知的跨注意操作来实现的,该操作可以汇总以非阴影区域特征为条件的恢复的阴影区域特征。与其他最先进的方法相比,关于ISTD,AISTD,SRD和视频阴影删除数据集的广泛实验证明了我们方法的优势。
translated by 谷歌翻译
大多数现有的RGB-D突出物体检测方法利用卷积操作并构建复杂的交织融合结构来实现跨模型信息集成。卷积操作的固有局部连接将基于卷积的方法的性能进行了限制到天花板的性能。在这项工作中,我们从全球信息对齐和转换的角度重新思考此任务。具体地,所提出的方法(Transcmd)级联几个跨模型集成单元来构造基于自上而下的变换器的信息传播路径(TIPP)。 Transcmd将多尺度和多模态特征集成作为序列到序列上下文传播和内置于变压器上的更新过程。此外,考虑到二次复杂性W.R.T.输入令牌的数量,我们设计了具有可接受的计算成本的修补程序令牌重新嵌入策略(Ptre)。七个RGB-D SOD基准数据集上的实验结果表明,在配备TIPP时,简单的两流编码器 - 解码器框架可以超越最先进的基于CNN的方法。
translated by 谷歌翻译
基于注意力的模型(例如变压器)在密集的预测任务(例如语义分割)上表现出出色的性能,因为它们可以捕获图像中的长期依赖性。但是,到目前为止,很少探索变压器对单眼深度预测的好处。本文基于室内NYUV2数据集和室外KITTI数据集的深度估计任务的各种基于变压器的模型。我们提出了一种新型的基于注意力的架构,即单眼深度估计的深度构建器,该估计使用多头自我注意力来生成多尺度特征图,这些图由我们提出的解码器网络有效地组合。我们还提出了一个跨键模块,该模块将深度范围划分为每个图像可自适应估计的中心值的垃圾箱。估计的最终深度是每个像素的垃圾箱中心的线性组合。 TransBins模块在编码阶段使用变压器模块利用全局接收场。 NYUV2和KITTI深度估计基准的实验结果表明,我们提出的方法将最新方法提高了3.3%,在根平方误差(RMSE)方面分别将最新方法提高了3.3%。
translated by 谷歌翻译