光流估计是自动驾驶和机器人系统系统中的一项基本任务,它可以在时间上解释流量场景。自动驾驶汽车显然受益于360 {\ deg}全景传感器提供的超宽视野(FOV)。但是,由于全景相机的独特成像过程,专为针孔图像设计的模型不会令人满意地概括为360 {\ deg}全景图像。在本文中,我们提出了一个新颖的网络框架 - panoflow,以学习全景图像的光流。为了克服全景转化中等应角投影引起的扭曲,我们设计了一种流动失真增强(FDA)方法,其中包含径向流量失真(FDA-R)或等骨流量失真(FDA-E)。我们进一步研究了全景视频的环状光流的定义和特性,并通过利用球形图像的环状来推断360 {\ deg}光流并将大型位移转换为相对小的位移,从而提出了环状流量估计(CFE)方法移位。 Panoflow适用于任何现有的流量估计方法,并从狭窄的FOL流量估计的进度中受益。此外,我们创建并释放基于CARLA的合成全景数据集Flow360,以促进训练和定量分析。 Panoflow在公共Omniflownet和已建立的Flow360基准中实现了最先进的表现。我们提出的方法将Flow360上的端点误差(EPE)降低了27.3%。在Omniflownet上,Panoflow获得了3.17像素的EPE,从最佳发布的结果中降低了55.5%的误差。我们还通过收集工具和公共现实世界中的全球数据集对我们的方法进行定性验证我们的方法,这表明对现实世界导航应用程序的强大潜力和稳健性。代码和数据集可在https://github.com/masterhow/panoflow上公开获取。
translated by 谷歌翻译
由于他们越来越多的可负担性,可移植性和360 {\ DEG}视野,全向360 {\ DEG}图像在计算机视觉,机器人和其他领域找到了许多有希望和激动人心的应用。用于存储,处理和可视化360 {\ DEG}图像的最常用格式是互连的投影(ERP)。然而,由360 {\ DEG}图像引入的非线性映射引入到ERP图像的失真仍然是一种屏障,其容纳作为传统透视图像的易于用作易用的屏障。当估计360 {\ DEG}光流时,这尤其相关,因为需要适当地减去失真。在本文中,我们提出了一种基于切线图像的360 {\ DEG}光学流量。我们的方法利用GNOMONIC投影将ERP图像局部转换为透视图像,并且通过投影将ERP图像均匀地对准CUBEMAP和常规ICOSAHEDRON顶点来逐步地进行逐步改进估计的360 {\ DEG}流场。我们的实验表明了我们所提出的方法的益处,这些方法都是定量和定性的。
translated by 谷歌翻译
全向视频中的光流估计面临两个重要问题:缺乏基准数据集以及调整基于视频的方法以适应全向性质的挑战。本文提出了第一个具有360度视野Flow360的感知上天然合成的全向基准数据集,其中有40个不同的视频和4,000个视频帧。我们在数据集和现有的光流数据集之间进行了全面的特征分析和比较,这些数据集表现出感知现实主义,独特性和多样性。为了适应全向性质,我们提出了一个新颖的暹罗表示学习框架(SLOF)。我们以对比度的方式训练我们的网络,并结合了对比度损失和光流损失的混合损失函数。广泛的实验验证了所提出的框架的有效性,并在最新方法中显示出40%的性能提高。我们的Flow360数据集和代码可在https://siamlof.github.io/上找到。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
在本文中,我们介绍了全景语义细分,该分段以整体方式提供了对周围环境的全景和密集的像素的理解。由于两个关键的挑战,全景分割尚未探索:(1)全景上的图像扭曲和对象变形; (2)缺乏培训全景分段的注释。为了解决这些问题,我们提出了一个用于全景语义细分(Trans4Pass)体系结构的变压器。首先,为了增强失真意识,Trans4Pass配备了可变形的贴片嵌入(DPE)和可变形的MLP(DMLP)模块,能够在适应之前(适应之前或之后)和任何地方(浅层或深度级别的(浅层或深度))和图像变形(通过任何涉及(浅层或深层))和图像变形(通过任何地方)和图像变形设计。我们进一步介绍了升级后的Trans4Pass+模型,其中包含具有平行令牌混合的DMLPV2,以提高建模歧视性线索的灵活性和概括性。其次,我们提出了一种无监督域适应性的相互典型适应(MPA)策略。第三,除了针孔到型 - 帕诺amic(PIN2PAN)适应外,我们还创建了一个新的数据集(Synpass),其中具有9,080个全景图像,以探索360 {\ deg} Imagery中的合成对真实(Syn2real)适应方案。进行了广泛的实验,这些实验涵盖室内和室外场景,并且使用PIN2PAN和SYN2REAL方案进行了研究。 Trans4Pass+在四个域自适应的全景语义分割基准上实现最先进的性能。代码可从https://github.com/jamycheung/trans4pass获得。
translated by 谷歌翻译
交通场景边缘壳体的语义分割的鲁棒性是智能运输安全的重要因素。然而,交通事故的大多数关键场景都是非常动态和以前看不见的,这严重损害了语义分割方法的性能。另外,在高速驾驶期间传统相机的延迟将进一步降低时间尺寸中的上下文信息。因此,我们建议从基于事件的数据提取动态上下文,以更高的时间分辨率来增强静态RGB图像,即使对于来自运动模糊,碰撞,变形,翻转等的流量事故而言,此外,为评估分割交通事故中的性能,我们提供了一个像素 - 明智的注释事故数据集,即Dada-Seg,其中包含来自交通事故的各种临界情景。我们的实验表明,基于事件的数据可以通过在事故中保留快速移动的前景(碰撞物体)的微粒运动来提供互补信息以在不利条件下稳定语义分割。我们的方法在拟议的事故数据集中实现了+ 8.2%的性能增益,超过了20多种最先进的语义细分方法。已经证明该提案对于在多个源数据库中学到的模型,包括CityScapes,Kitti-360,BDD和Apolloscape的模型始终如一。
translated by 谷歌翻译
通过探索跨视图一致性,例如,光度计一致性和3D点云的一致性,在自我监督的单眼深度估计(SS-MDE)中取得了显着进步。但是,它们非常容易受到照明差异,遮挡,无纹理区域以及移动对象的影响,使它们不够强大,无法处理各种场景。为了应对这一挑战,我们在本文中研究了两种强大的跨视图一致性。首先,相邻帧之间的空间偏移场是通过通过可变形对齐来从其邻居重建参考框架来获得的,该比对通过深度特征对齐(DFA)损失来对齐时间深度特征。其次,计算每个参考框架及其附近框架的3D点云并转换为体素空间,在其中计算每个体素中的点密度并通过体素密度比对(VDA)损耗对齐。通过这种方式,我们利用了SS-MDE的深度特征空间和3D体素空间的时间连贯性,将“点对点”对齐范式转移到“区域到区域”。与光度一致性损失以及刚性点云对齐损失相比,由于深度特征的强大代表能力以及对上述挑战的素密度的高公差,提出的DFA和VDA损失更加强大。几个户外基准的实验结果表明,我们的方法的表现优于当前最新技术。广泛的消融研究和分析验证了拟议损失的有效性,尤其是在具有挑战性的场景中。代码和型号可在https://github.com/sunnyhelen/rcvc-depth上找到。
translated by 谷歌翻译
我们提出了场景运动的新颖双流表示,将光流分​​解为由摄像机运动引起的静态流场和另一个由场景中对象的运动引起的动态流场。基于此表示形式,我们提出了一个动态的大满贯,称为Deflowslam,它利用图像中的静态和动态像素来求解相机的姿势,而不是像其他动态SLAM系统一样简单地使用静态背景像素。我们提出了一个动态更新模块,以一种自我监督的方式训练我们的Deflowslam,其中密集的束调节层采用估计的静态流场和由动态掩码控制的权重,并输出优化的静态流动场的残差,相机姿势的残差,和反度。静态和动态流场是通过将当前图像翘曲到相邻图像来估计的,并且可以通过将两个字段求和来获得光流。广泛的实验表明,在静态场景和动态场景中,Deflowslam可以很好地推广到静态和动态场景,因为它表现出与静态和动态较小的场景中最先进的Droid-Slam相当的性能,同时在高度动态的环境中表现出明显优于Droid-Slam。代码和数据可在项目网页上找到:\ urlstyle {tt} \ textColor {url_color} {\ url {https://zju3dv.github.io/deflowslam/}}}。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
Recent work has shown that optical flow estimation can be formulated as a supervised learning task and can be successfully solved with convolutional networks. Training of the so-called FlowNet was enabled by a large synthetically generated dataset. The present paper extends the concept of optical flow estimation via convolutional networks to disparity and scene flow estimation. To this end, we propose three synthetic stereo video datasets with sufficient realism, variation, and size to successfully train large networks. Our datasets are the first large-scale datasets to enable training and evaluating scene flow methods. Besides the datasets, we present a convolutional network for real-time disparity estimation that provides state-of-the-art results. By combining a flow and disparity estimation network and training it jointly, we demonstrate the first scene flow estimation with a convolutional network.
translated by 谷歌翻译
在接受高质量的地面真相(如LiDAR数据)培训时,监督的学习深度估计方法可以实现良好的性能。但是,LIDAR只能生成稀疏的3D地图,从而导致信息丢失。每个像素获得高质量的地面深度数据很难获取。为了克服这一限制,我们提出了一种新颖的方法,将有前途的平面和视差几何管道与深度信息与U-NET监督学习网络相结合的结构信息结合在一起,与现有的基于流行的学习方法相比,这会导致定量和定性的改进。特别是,该模型在两个大规模且具有挑战性的数据集上进行了评估:Kitti Vision Benchmark和CityScapes数据集,并在相对错误方面取得了最佳性能。与纯深度监督模型相比,我们的模型在薄物体和边缘的深度预测上具有令人印象深刻的性能,并且与结构预测基线相比,我们的模型的性能更加强大。
translated by 谷歌翻译
Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.
translated by 谷歌翻译
Visual perception plays an important role in autonomous driving. One of the primary tasks is object detection and identification. Since the vision sensor is rich in color and texture information, it can quickly and accurately identify various road information. The commonly used technique is based on extracting and calculating various features of the image. The recent development of deep learning-based method has better reliability and processing speed and has a greater advantage in recognizing complex elements. For depth estimation, vision sensor is also used for ranging due to their small size and low cost. Monocular camera uses image data from a single viewpoint as input to estimate object depth. In contrast, stereo vision is based on parallax and matching feature points of different views, and the application of deep learning also further improves the accuracy. In addition, Simultaneous Location and Mapping (SLAM) can establish a model of the road environment, thus helping the vehicle perceive the surrounding environment and complete the tasks. In this paper, we introduce and compare various methods of object detection and identification, then explain the development of depth estimation and compare various methods based on monocular, stereo, and RDBG sensors, next review and compare various methods of SLAM, and finally summarize the current problems and present the future development trends of vision technologies.
translated by 谷歌翻译
摄像机是自动化驱动系统中的主要传感器。它们提供高信息密度,并对检测为人类视野提供的道路基础设施线索最优。环绕式摄像机系统通常包括具有190 {\ DEG} +视野的四个鱼眼相机,覆盖在车辆周围的整个360 {\ DEG}集中在近场传感上。它们是低速,高精度和近距离传感应用的主要传感器,如自动停车,交通堵塞援助和低速应急制动。在这项工作中,我们提供了对这种视觉系统的详细调查,在可以分解为四个模块化组件的架构中,设置调查即可识别,重建,重建和重组。我们共同称之为4R架构。我们讨论每个组件如何完成特定方面,并提供一个位置论证,即它们可以协同组织以形成用于低速自动化的完整感知系统。我们通过呈现来自以前的作品的结果,并通过向此类系统提出架构提案来支持此参数。定性结果在视频中呈现在HTTPS://youtu.be/ae8bcof7777uy中。
translated by 谷歌翻译
We present a compact but effective CNN model for optical flow, called PWC-Net. PWC-Net has been designed according to simple and well-established principles: pyramidal processing, warping, and the use of a cost volume. Cast in a learnable feature pyramid, PWC-Net uses the current optical flow estimate to warp the CNN features of the second image. It then uses the warped features and features of the first image to construct a cost volume, which is processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in size and easier to train than the recent FlowNet2 model. Moreover, it outperforms all published optical flow methods on the MPI Sintel final pass and KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024×436) images. Our models are available on https://github.com/NVlabs/PWC-Net.
translated by 谷歌翻译
我们提出了一种便携式多型摄像头系统,该系统具有专用模型,用于动态场景中的新型视图和时间综合。我们的目标是使用我们的便携式多座相机从任何角度从任何角度出发为动态场景提供高质量的图像。为了实现这种新颖的观点和时间综合,我们开发了一个配备了五个相机的物理多型摄像头,以在时间和空间域中训练神经辐射场(NERF),以进行动态场景。我们的模型将6D坐标(3D空间位置,1D时间坐标和2D观看方向)映射到观看依赖性且随时间变化的发射辐射和体积密度。量渲染用于在指定的相机姿势和时间上渲染光真实的图像。为了提高物理相机的鲁棒性,我们提出了一个摄像机参数优化模块和一个时间框架插值模块,以促进跨时间的信息传播。我们对现实世界和合成数据集进行了实验以评估我们的系统,结果表明,我们的方法在定性和定量上优于替代解决方案。我们的代码和数据集可从https://yuenfuilau.github.io获得。
translated by 谷歌翻译
由少量镜头组成的全景环形镜头(PAL)在全景周围具有巨大潜力,该镜头围绕着移动和可穿戴设备的传感任务,因为其尺寸很小,并且视野很大(FOV)。然而,由于缺乏畸变校正的镜头,小体积PAL的图像质量仅限于光学极限。在本文中,我们提出了一个环形计算成像(ACI)框架,以打破轻质PAL设计的光学限制。为了促进基于学习的图像恢复,我们引入了基于波浪的模拟管道,用于全景成像,并通过多个数据分布来应对合成间隙。提出的管道可以轻松地适应具有设计参数的任何PAL,并且适用于宽松的设计。此外,我们考虑了全景成像和物理知识学习的物理先验,我们设计了物理知情的图像恢复网络(PI2RNET)。在数据集级别,我们创建了Divpano数据集,其广泛的实验表明,我们提出的网络在空间变化的降级下在全景图像恢复中设置了新的最新技术。此外,对只有3个球形镜头的简单PAL上提议的ACI的评估揭示了高质量全景成像与紧凑设计之间的微妙平衡。据我们所知,我们是第一个探索PAL中计算成像(CI)的人。代码和数据集将在https://github.com/zju-jiangqi/aci-pi2rnet上公开提供。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译