对实际对话系统的用户查询有时可能出现在系统功能的范围之外,但适当的系统响应将在整个人机交互中进行平滑处理。本文涉及用户的意图,并专注于对话系统中的范围内意图分类。虽然用户意图与应用领域高度相关,但很少有研究利用意图分类这种相关性。而不是开发一个首先对域进行分类的两阶段方法,而是意图,我们提出了一种基于联合模型的分层多任务学习方法来分类域同时和意图。拟议方法中的Noveltize包括:(1)分享域的联合建模中的监督范围信号和意图分类,以取代两级管道; (2)引入分层模型,分别在较高层和下层中学习意图和域表示。实验表明,该模型在准确性,范围外召回和F1方面优于现有方法。此外,基于阈值的后处理进一步通过平衡精度和调用意图中的分类来提高性能。
translated by 谷歌翻译
Intent classification and slot filling are two core tasks in natural language understanding (NLU). The interaction nature of the two tasks makes the joint models often outperform the single designs. One of the promising solutions, called BERT (Bidirectional Encoder Representations from Transformers), achieves the joint optimization of the two tasks. BERT adopts the wordpiece to tokenize each input token into multiple sub-tokens, which causes a mismatch between the tokens and the labels lengths. Previous methods utilize the hidden states corresponding to the first sub-token as input to the classifier, which limits performance improvement since some hidden semantic informations is discarded in the fine-tune process. To address this issue, we propose a novel joint model based on BERT, which explicitly models the multiple sub-tokens features after wordpiece tokenization, thereby generating the context features that contribute to slot filling. Specifically, we encode the hidden states corresponding to multiple sub-tokens into a context vector via the attention mechanism. Then, we feed each context vector into the slot filling encoder, which preserves the integrity of the sentence. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on two public benchmark datasets. The F1 score of the slot filling in particular has been improved from 96.1 to 98.2 (2.1% absolute) on the ATIS dataset.
translated by 谷歌翻译
口语语言理解已被处理为监督的学习问题,其中每个域都有一组培训数据。但是,每个域的注释数据都是经济昂贵和不可扩展的,因此我们应该充分利用所有域的信息。通过进行多域学习,使用跨域的联合训练的共享参数来解决一个现有方法解决问题。我们建议通过使用域特定和特定于任务的模型参数来改善该方法的参数化,以改善知识学习和传输。5个域的实验表明,我们的模型对多域SLU更有效,并获得最佳效果。此外,当适应具有很少数据的新域时,通过优于12.4 \%来表现出先前最佳模型的可转换性。
translated by 谷歌翻译
意图理解在对话系统中发挥着重要作用,通常被制定为监督的学习问题。然而,从头开始设计新领域的意图是挑战性和耗时的,通常需要很多人工域专家的手动努力。本文提出了一种无监督的两阶段方法来发现意图,并从域中的未标记的话语集合自动生成有意义的意图标签。在第一阶段,我们的目标是生成一组语义相干群集,其中每个簇内的话语传达相同的意图。我们从各种预先训练的句子嵌入中获取话语表示,并呈现平衡分数的度量,以确定用于平衡数据集的K-means群集中的k-means群集中的最佳簇数。在第二阶段,目标是为每个群集自动生成意图标签。我们使用依赖性解析器从每个话语中提取动作对象对,并在每个群集中采取最常用的对,例如书籍餐厅,作为生成的意图标签。我们经验证明,提出的无监督方法可以自动生成有意义的意图标签,并在话语聚类和意图发现中实现高精度并召回。
translated by 谷歌翻译
最近,培训预培训方法在以任务为导向的对话框(TOD)系统中表现出了很大的成功。但是,大多数现有的预培训模型用于TOD专注于对话的理解或对话生成,但并非两者兼而有之。在本文中,我们提出了Space-3,这是一种新型的统一的半监督预培训的预训练的对话模型,从大规模对话CORPORA中学习有限的注释,可以有效地对广泛的下游对话任务进行微调。具体而言,Space-3由单个变压器中的四个连续组件组成,以维护TOD系统中的任务流:(i)对话框编码模块编码对话框历史记录,(ii)对话框理解模块以从任一用户中提取语义向量查询或系统响应,(iii)一个对话框策略模块,以生成包含响应高级语义的策略向量,以及(iv)对话框生成模块以产生适当的响应。我们为每个组件设计一个专门的预训练目标。具体而言,我们预先培训对话框编码模块,使用跨度掩码语言建模,以学习上下文化对话框信息。为了捕获“结构化对话框”语义,我们通过额外的对话注释通过新颖的树诱导的半监视对比度学习目标来预先培训对话框理解模块。此外,我们通过将其输出策略向量与响应响应的语义向量之间的L2距离最小化以进行策略优化,从而预先培训对话策略模块。最后,对话框生成模型由语言建模预先训练。结果表明,Space-3在八个下游对话框基准中实现最新性能,包括意图预测,对话框状态跟踪和端到端对话框建模。我们还表明,在低资源设置下,Space-3比现有模型具有更强的射击能力。
translated by 谷歌翻译
对话系统必须能够随着时间的推移通过更新来纳入新技能,以反映新的用例或部署方案。同样,此类ML驱动系统的开发人员需要能够在已经存在的数据集中添加新的培训数据,以支持这些新技能。在意图分类系统中,如果培训数据的新技能意图与已经存在的意图重叠,则可能会出现问题。我们称此类案件发生冲突。本文介绍了多个数据集之间意图碰撞检测的任务,以提高系统的技能。我们介绍了几种检测碰撞的方法,并评估我们在展示碰撞的真实数据集上的方法。为了强调对意图碰撞检测的需求,我们表明,如果添加新数据,则模型性能会受到影响。最后,我们使用碰撞检测来构建和基准一个新的数据集Redwood,该数据集由13个原始意图分类数据集中的451个Nentent类别组成,使其成为最大的公开可用意图分类基准。
translated by 谷歌翻译
学习高质量的对话表示对于解决各种面向对话的任务至关重要,尤其是考虑到对话系统通常会遇到数据稀缺。在本文中,我们介绍了对话句子嵌入(DSE),这是一种自我监督的对比学习方法,它学习有效的对话表示,适合各种对话任务。 DSE通过连续进行与对比度学习的正面对话的连续对话来从对话中学习。尽管它很简单,但DSE的表现能力比其他对话表示和普遍的句子表示模型要好得多。我们评估DSE的五个下游对话任务,这些任务检查了不同语义粒度的对话表示。几次射击和零射击设置的实验表明,DSE的表现要优于基线。例如,它在6个数据集中的1-Shot意图分类中比最强的无监督基线实现了13%的平均绩效提高。我们还提供了有关模型的好处和局限性的分析。
translated by 谷歌翻译
具有对比性学习目标的预训练方法在对话了解任务中表现出了显着的成功。但是,当前的对比学习仅将自调查的对话样本视为正样本,并将所有其他对话样本视为负面样本,即使在语义上相关的对话框中,也会强制执行不同的表示。在本文中,我们提出了一个树木结构化的预培训对话模型Space-2,该模型从有限标记的对话框和大规模的无标记的对话框COLPORA通过半监督的对比度预培训来学习对话框表示。具体而言,我们首先定义一个通用的语义树结构(STS),以统一不同对话框数据集的注释模式,以便可以利用所有标记数据中存储的丰富结构信息。然后,我们提出了一个新颖的多视图分数功能,以增加共享类似STS的所有可能对话框的相关性,并且在监督的对比预训练期间仅推开其他完全不同的对话框。为了充分利用未标记的对话,还增加了基本的自我监督对比损失,以完善学习的表示。实验表明,我们的方法可以在DialogLue基准测试中实现新的最新结果,该基准由七个数据集和四个流行的对话框组成。为了获得可重复性,我们在https://github.com/alibabaresearch/damo-convai/tree/main/main/space-2上发布代码和数据。
translated by 谷歌翻译
转移学习技术和预先培训的最新进展,大型上下文编码器在包括对话助理在内的现实应用程序中促进了创新。意图识别的实际需求需要有效的数据使用,并能够不断更新支持意图,采用新的意图并放弃过时的意图。尤其是,对模型的广义零拍范例,该模型受到了可见意图的训练并在可见和看不见的意图上进行了测试,这是新的重要性。在本文中,我们探讨了用于意图识别的广义零拍设置。遵循零击文本分类的最佳实践,我们使用句子对建模方法对待任务。对于看不见的意图,使用意图标签和用户话语,而无需访问外部资源(例如知识库),我们的表现优于先前的最先进的F1量化,最多可达16 \%。进一步的增强包括意图标签的词汇化,可提高性能高达7%。通过使用从其他句子对任务(例如自然语言推论)转移的任务传输,我们会获得其他改进。
translated by 谷歌翻译
在过去的十年中,对对话系统的兴趣已经大大增长。从扩展过程中,也有兴趣开发和改进意图分类和插槽填充模型,这是两个组件,这些组件通常在以任务为导向的对话框系统中使用。此外,良好的评估基准对于帮助比较和分析结合此类模型的系统很重要。不幸的是,该领域的许多文献仅限于对相对较少的基准数据集的分析。为了促进针对任务的对话系统的更强大的分析,我们对意图分类和插槽填充任务进行了公开可用数据集的调查。我们分类每个数据集的重要特征,并就每个数据集的适用性,优势和劣势进行讨论。我们的目标是,这项调查有助于提高这些数据集的可访问性,我们希望它们能够在未来评估意图分类和填充插槽模型中用于以任务为导向的对话框系统。
translated by 谷歌翻译
面向目标的对话系统的核心组件之一是意图检测的任务。由于可用的附带话语的稀缺性,目的检测时的几次射门学习是挑战。尽管最近的作品已经提出了使用基于度量的基于优化的方法,但任务仍然在大标签空间中挑战,射击数量小得多。由于在测试阶段,由于两种新颖和看到的课程存在,概括的少量学习更加困难。在这项工作中,我们提出了一种基于自然语言推理的简单有效的方法,不仅解决了几次射击意图检测问题,而且在零射击和广义少数射击学习问题中证明是有用的。我们对许多自然语言理解(NLU)和口语理解(SLU)数据集的大量实验表明了我们的方法的有效性。此外,我们突出了我们基于NLI的方法的设置,通过巨大的利润率优于基线。
translated by 谷歌翻译
语言理解(SLU)是以任务为导向对话系统的核心组成部分,期望面对人类用户不耐烦的推理较短。现有的工作通过为单转弯任务设计非自动回旋模型来提高推理速度,但在面对对话历史记录时未能适用于多转移SLU。直观的想法是使所有历史言语串联并直接利用非自动进取模型。但是,这种方法严重错过了显着的历史信息,并遭受了不协调的问题。为了克服这些缺点,我们提出了一个新型模型,用于使用层改造的变压器(SHA-LRT),该模型名为“显着历史”,该模型由SHA模块组成,该模块由SHA模块组成,一种层的机制(LRM)和插槽标签生成(SLG)任务。 SHA通过历史悠久的注意机制捕获了从历史言论和结果进行的当前对话的显着历史信息。 LRM预测了Transferer的中间状态的初步SLU结果,并利用它们来指导最终预测,SLG获得了非自动进取编码器的顺序依赖性信息。公共数据集上的实验表明,我们的模型可显着提高多转弯性能(总体上为17.5%),并且加速(接近15倍)最先进的基线的推理过程,并且在单转弯方面有效SLU任务。
translated by 谷歌翻译
插槽填充和意图检测是自然语言理解领域的两个基本任务。由于这两项任务之间存在很强的相关性,因此以前的研究努力通过多任务学习或设计功能交互模块来建模它们,以提高每个任务的性能。但是,现有的方法都没有考虑句子的结构信息与两个任务的标签语义之间的相关性。话语的意图和语义成分取决于句子的句法元素。在本文中,我们研究了一个多透明的标签改进网络,该网络利用依赖性结构和标签语义嵌入。考虑到增强句法表示,我们将句子的依赖性结构介绍到我们的模型中。为了捕获句法信息和任务标签之间的语义依赖性,我们将特定于任务的特征与相应的标签嵌入通过注意机制相结合。实验结果表明,我们的模型在两个公共数据集上实现了竞争性能。
translated by 谷歌翻译
公开意图检测是自然语言理解中的一个重大问题,旨在以仅知道已知意图的先验知识来检测看不见的公开意图。当前方法在此任务中面临两个核心挑战。一方面,他们在学习友好表示方面有局限性来检测公开意图。另一方面,缺乏有效的方法来获得已知意图的特定和紧凑的决策边界。为了解决这些问题,本文介绍了一个原始框架DA-ADB,该框架连续学习了远距离感知的意图表示和自适应决策边界,以进行开放意图检测。具体而言,我们首先利用距离信息来增强意图表示的区别能力。然后,我们设计了一种新颖的损失函数,以通过平衡经验和开放空间风险来获得适当的决策界限。广泛的实验显示了距离了解和边界学习策略的有效性。与最先进的方法相比,我们的方法在三个基准数据集上实现了重大改进。它还具有不同比例的标记数据和已知类别的稳健性能。完整的数据和代码可在https://github.com/thuiar/textoir上获得
translated by 谷歌翻译
Text classification, a core component of task-oriented dialogue systems, attracts continuous research from both the research and industry community, and has resulted in tremendous progress. However, existing method does not consider the use of label information, which may weaken the performance of text classification systems in some token-aware scenarios. To address the problem, in this paper, we introduce the use of label information as label embedding for the task of text classification and achieve remarkable performance on benchmark dataset.
translated by 谷歌翻译
Multi-intent detection and slot filling joint models are gaining increasing traction since they are closer to complicated real-world scenarios. However, existing approaches (1) focus on identifying implicit correlations between utterances and one-hot encoded labels in both tasks while ignoring explicit label characteristics; (2) directly incorporate multi-intent information for each token, which could lead to incorrect slot prediction due to the introduction of irrelevant intent. In this paper, we propose a framework termed DGIF, which first leverages the semantic information of labels to give the model additional signals and enriched priors. Then, a multi-grain interactive graph is constructed to model correlations between intents and slots. Specifically, we propose a novel approach to construct the interactive graph based on the injection of label semantics, which can automatically update the graph to better alleviate error propagation. Experimental results show that our framework significantly outperforms existing approaches, obtaining a relative improvement of 13.7% over the previous best model on the MixATIS dataset in overall accuracy.
translated by 谷歌翻译
以任务为导向的对话系统通常采用对话状态跟踪器(DST)成功完成对话。最近的最新DST实现依赖于各种服务的模式来改善模型的鲁棒性并处理对新域的零击概括[1],但是这种方法[2,3]通常需要多个大型变压器模型和长时间输入序列以表现良好。我们提出了一个基于多任务BERT的单个模型,该模型共同解决了意图预测的三个DST任务,请求的插槽预测和插槽填充。此外,我们提出了对对话历史和服务模式的高效和简约编码,该编码被证明可以进一步提高性能。对SGD数据集的评估表明,我们的方法的表现优于基线SGP-DST,比最新的方法相比表现良好,同时在计算上的效率更高。进行了广泛的消融研究,以检查我们模型成功的促成因素。
translated by 谷歌翻译
建模法检索和检索作为预测问题最近被出现为法律智能的主要方法。专注于法律文章检索任务,我们展示了一个名为Lamberta的深度学习框架,该框架被设计用于民法代码,并在意大利民法典上专门培训。为了我们的知识,这是第一项研究提出了基于伯特(来自变压器的双向编码器表示)学习框架的意大利法律制度对意大利法律制度的高级法律文章预测的研究,最近引起了深度学习方法的增加,呈现出色的有效性在几种自然语言处理和学习任务中。我们通过微调意大利文章或其部分的意大利预先训练的意大利预先训练的伯爵来定义Lamberta模型,因为法律文章作为分类任务检索。我们Lamberta框架的一个关键方面是我们构思它以解决极端的分类方案,其特征在于课程数量大,少量学习问题,以及意大利法律预测任务的缺乏测试查询基准。为了解决这些问题,我们为法律文章的无监督标签定义了不同的方法,原则上可以应用于任何法律制度。我们提供了深入了解我们Lamberta模型的解释性和可解释性,并且我们对单一标签以及多标签评估任务进行了广泛的查询模板实验分析。经验证据表明了Lamberta的有效性,以及对广泛使用的深度学习文本分类器和一些构思的几次学习者来说,其优越性是对属性感知预测任务的优势。
translated by 谷歌翻译
Neural language representation models such as BERT pre-trained on large-scale corpora can well capture rich semantic patterns from plain text, and be fine-tuned to consistently improve the performance of various NLP tasks. However, the existing pre-trained language models rarely consider incorporating knowledge graphs (KGs), which can provide rich structured knowledge facts for better language understanding. We argue that informative entities in KGs can enhance language representation with external knowledge. In this paper, we utilize both large-scale textual corpora and KGs to train an enhanced language representation model (ERNIE), which can take full advantage of lexical, syntactic, and knowledge information simultaneously. The experimental results have demonstrated that ERNIE achieves significant improvements on various knowledge-driven tasks, and meanwhile is comparable with the state-of-the-art model BERT on other common NLP tasks. The source code and experiment details of this paper can be obtained from https:// github.com/thunlp/ERNIE.
translated by 谷歌翻译
Named Entity Recognition and Intent Classification are among the most important subfields of the field of Natural Language Processing. Recent research has lead to the development of faster, more sophisticated and efficient models to tackle the problems posed by those two tasks. In this work we explore the effectiveness of two separate families of Deep Learning networks for those tasks: Bidirectional Long Short-Term networks and Transformer-based networks. The models were trained and tested on the ATIS benchmark dataset for both English and Greek languages. The purpose of this paper is to present a comparative study of the two groups of networks for both languages and showcase the results of our experiments. The models, being the current state-of-the-art, yielded impressive results and achieved high performance.
translated by 谷歌翻译