我们考虑在以$ s $状态的地平线$ h $和$ a $ ACTIVE的偶发性,有限的,依赖于阶段的马尔可夫决策过程的环境中进行强化学习。代理商的性能是在与环境互动以$ t $插件互动后的遗憾来衡量的。我们提出了一种乐观的后验抽样算法(OPSRL),这是一种简单的后验抽样变体,仅需要许多后样品对数,$ h $,$ s $,$ a $和$ t $ a $ h $ s $ s $ a $ a $和$ t $一对。对于OPSRL,我们保证最多可容纳订单的高概率遗憾,$ \ wideTilde {\ mathcal {o}}}(\ sqrt {h^3sat})$忽略$ \ text {poly} \ log(hsat)$项。新型的新型技术成分是线性形式的新型抗浓缩不等式,可能具有独立感兴趣。具体而言,我们将Alfers and Dinges [1984]的Beta分布的基于正常近似的下限扩展到Dirichlet分布。我们的界限匹配订单$ \ omega(\ sqrt {h^3sat})$的下限,从而回答了Agrawal和Jia [2017b]在情节环境中提出的空旷问题。
translated by 谷歌翻译
我们提出了在表格,依赖阶段的,情节的马尔可夫决策过程中使用贝叶斯-UCBVI算法进行增强学习的:Kaufmann等人的贝叶斯-UCB算法的自然扩展。 (2012年)用于多军匪徒。我们的方法将Q值函数后部的分位数用作最佳Q值函数上的上限。对于贝叶斯-UCBVI,我们证明了一个遗憾的是$ \ wideTilde {o}(\ sqrt {h^3sat})$,其中$ h $是一集的长度,$ s $是$ s $的数量,$ a $ a $动作数量,$ t $情节数,与$ \ omega(\ sqrt {h^3sat})$符合poly-$ \ $ \ log $ enter $ h,s,s,a,a,a,a,a ,适用于足够大的$ t $的t $。据我们所知,这是第一种获得对地平线$ h $(和$ s $)的最佳依赖性的算法,而无需涉及伯恩斯坦的奖金或噪音。对于我们的分析而言,至关重要的是一种新的细粒抗浓缩,以具有独立感兴趣的加权dirichlet总和。然后,我们解释了如何轻松地将贝叶斯-UCBVI延伸到表格环境之外,从而在我们的算法和贝叶斯引导之间表现出牢固的联系(Rubin,1981)。
translated by 谷歌翻译
We consider the problem of provably optimal exploration in reinforcement learning for finite horizon MDPs. We show that an optimistic modification to value iteration achieves a regret bound of O(where H is the time horizon, S the number of states, A the number of actions and T the number of time-steps. This result improves over the best previous known bound O(HS √ AT ) achieved by the UCRL2 algorithm of Jaksch et al. ( 2010). The key significance of our new results is that when T ≥ H 3 S 3 A and SA ≥ H, it leads to a regret of O( √ HSAT ) that matches the established lower bound of Ω( √ HSAT ) up to a logarithmic factor. Our analysis contains two key insights. We use careful application of concentration inequalities to the optimal value function as a whole, rather than to the transitions probabilities (to improve scaling in S), and we define Bernstein-based "exploration bonuses" that use the empirical variance of the estimated values at the next states (to improve scaling in H).
translated by 谷歌翻译
本文研究了钢筋学习中随机价值函数的遗为最小化。在表格有限地平线马尔可夫决策过程中,我们引入了一种典型的汤普森采样(TS)-like算法的剪切变体,随机最小二乘值迭代(RLSVI)。我们的$ \ tilde {\ mathrm {o}}(h ^ 2s \ sqrt {at})$高概率最坏情况后悔绑定改善了rlsvi的先前最锐化的最糟糕的遗憾界限,并匹配现有的状态 - 基于最糟糕的TS的遗憾界限。
translated by 谷歌翻译
强化学习理论集中在两个基本问题上:实现低遗憾,并确定$ \ epsilon $ - 最佳政策。虽然简单的减少允许人们应用低温算法来获得$ \ epsilon $ - 最佳政策并达到最坏的最佳速率,但尚不清楚低regret算法是否可以获得实例 - 最佳率的策略识别率。我们表明这是不可能的 - 在遗憾和确定$ \ epsilon $ - 最佳政策之间以最佳的利率确定了基本的权衡。由于我们的负面发现,我们提出了针对PAC表格增强学习实例依赖性样本复杂性的新量度,该方法明确说明了基础MDP中可达到的国家访问分布。然后,我们提出和分析一种基于计划的新型算法,该算法达到了这种样本的复杂性 - 产生的复杂性会随着次要差距和状态的“可达到性”而缩放。我们显示我们的算法几乎是最小的最佳选择,并且在一些示例中,我们实例依赖性样品复杂性比最差案例界限可显着改善。
translated by 谷歌翻译
Model-free reinforcement learning (RL) algorithms, such as Q-learning, directly parameterize and update value functions or policies without explicitly modeling the environment. They are typically simpler, more flexible to use, and thus more prevalent in modern deep RL than model-based approaches. However, empirical work has suggested that model-free algorithms may require more samples to learn [7,22]. The theoretical question of "whether model-free algorithms can be made sample efficient" is one of the most fundamental questions in RL, and remains unsolved even in the basic scenario with finitely many states and actions.We prove that, in an episodic MDP setting, Q-learning with UCB exploration achieves regret Õ( √ H 3 SAT ), where S and A are the numbers of states and actions, H is the number of steps per episode, and T is the total number of steps. This sample efficiency matches the optimal regret that can be achieved by any model-based approach, up to a single √ H factor. To the best of our knowledge, this is the first analysis in the model-free setting that establishes √ T regret without requiring access to a "simulator." * The first two authors contributed equally.
translated by 谷歌翻译
我们研究了情节块MDP中模型估计和无奖励学习的问题。在这些MDP中,决策者可以访问少数潜在状态产生的丰富观察或上下文。我们首先对基于固定行为策略生成的数据估算潜在状态解码功能(从观测到潜在状态的映射)感兴趣。我们在估计此功能的错误率上得出了信息理论的下限,并提出了接近此基本限制的算法。反过来,我们的算法还提供了MDP的所有组件的估计值。然后,我们研究在无奖励框架中学习近乎最佳政策的问题。根据我们有效的模型估计算法,我们表明我们可以以最佳的速度推断出策略(随着收集样品的数量增长大)的最佳策略。有趣的是,我们的分析提供了必要和充分的条件,在这些条件下,利用块结构可以改善样本复杂性,以识别近乎最佳的策略。当满足这些条件时,Minimax无奖励设置中的样本复杂性将通过乘法因子$ n $提高,其中$ n $是可能的上下文数量。
translated by 谷歌翻译
我们在加固学习中使用汤普森采样(TS) - 样算法中的随机价值函数研究探索。这种类型的算法享有有吸引力的经验性能。我们展示当我们使用1)每一集中的单个随机种子,而2)伯尼斯坦型噪声幅度,我们获得了最坏的情况$ \ widetilde {o}左(h \ sqrt {sat} \右)$遗憾绑定了焦点时间 - 不均匀的马尔可夫决策过程,其中$ S $是国家空间的大小,$ a $的是行动空间的大小,$ h $是规划地平线,$ t $是互动的数量。这种绑定的多项式基于随机值函数的TS样算法的所有现有界限,并且首次匹配$ \ Omega \左(H \ SQRT {SAT}右)$下限到对数因子。我们的结果强调随机勘探可以近乎最佳,这是以前仅通过乐观算法实现的。为了实现所需的结果,我们开发1)新的剪辑操作,以确保持续持续的概率和悲观的概率是较低的常数,并且2)用于分析估计误差的绝对值的新递归公式。后悔。
translated by 谷歌翻译
我们研究了用线性函数近似的加固学习中的违规评估(OPE)问题,旨在根据行为策略收集的脱机数据来估计目标策略的价值函数。我们建议纳入价值函数的方差信息以提高ope的样本效率。更具体地说,对于时间不均匀的epiSodic线性马尔可夫决策过程(MDP),我们提出了一种算法VA-OPE,它使用价值函数的估计方差重新重量拟合Q迭代中的Bellman残差。我们表明我们的算法达到了比最着名的结果绑定的更紧密的误差。我们还提供了行为政策与目标政策之间的分布转移的细粒度。广泛的数值实验证实了我们的理论。
translated by 谷歌翻译
获取一阶遗憾界限 - 遗憾的界限不是作为最坏情况,但有一些衡量给定实例的最佳政策的性能 - 是连续决策的核心问题。虽然这种界限存在于许多设置中,但它们在具有大状态空间的钢筋学习中被证明是难以捉摸的。在这项工作中,我们解决了这个差距,并表明可以将遗憾的缩放作为$ \ mathcal {o}(\ sqrt {v_1 ^ \ star})$中的钢筋学习,即用大状态空间,即线性MDP设置。这里$ v_1 ^ \ star $是最佳政策的价值,$ k $是剧集的数量。我们证明基于最小二乘估计的现有技术不足以获得该结果,而是基于强大的Catoni平均估计器制定一种新的稳健自归一化浓度,其可能具有独立兴趣。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译
我们在非静止线性(AKA低级别)马尔可夫决策过程(MDP)中研究了集中加强学习,即奖励和转换内核都是关于给定特征映射的线性,并且被允许缓慢或突然演变时间。对于此问题设置,我们提出了一种基于加权最小二乘值的乐观模型算法的Opt-WLSVI,其使用指数权重来平滑地忘记过去远远的数据。我们表明我们的算法在每次竞争最佳政策时,实现了由$ \ widetilde {\ mathcal {o}}的上部界限的遗憾(d ^ {5/4} h ^ 2 \ delta ^ {1 / 4} k ^ {3/4})$何地在$ d $是特征空间的尺寸,$ h $是规划地平线,$ k $是剧集的数量和$ \ delta $是一个合适的衡量标准MDP的非固定性。此外,我们指出了在忘记以前作品的非静止线性匪徒环境中忘记策略的技术差距,并提出了修复其遗憾分析。
translated by 谷歌翻译
In reinforcement learning the Q-values summarize the expected future rewards that the agent will attain. However, they cannot capture the epistemic uncertainty about those rewards. In this work we derive a new Bellman operator with associated fixed point we call the `knowledge values'. These K-values compress both the expected future rewards and the epistemic uncertainty into a single value, so that high uncertainty, high reward, or both, can yield high K-values. The key principle is to endow the agent with a risk-seeking utility function that is carefully tuned to balance exploration and exploitation. When the agent follows a Boltzmann policy over the K-values it yields a Bayes regret bound of $\tilde O(L \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the total number of states, $A$ is the number of actions, and $T$ is the number of elapsed timesteps. We show deep connections of this approach to the soft-max and maximum-entropy strands of research in reinforcement learning.
translated by 谷歌翻译
我们在生成模型下研究了固定置信度设置中的折扣线性马尔可夫决策过程中最佳政策识别的问题。我们首先在实例特定的下限上获得了识别$ \ varepsilon $ - 最佳策略所需的预期数量,并具有概率$ 1- \ delta $。下边界将最佳采样规则表征为复杂的非凸优化程序的解决方案,但可以用作设计简单而近乎最佳的采样规则和算法的起点。我们设计了这样的算法。其中之一展示了样本复杂性上限,由$ {\ cal o}({\ frac {d} {(\ varepsilon+\ delta)^2}}}}(\ log(\ frac {1} {\ delta} {\ delta})+d d d}} ))$,其中$ \ delta $表示次优的动作的最小奖励差距和$ d $是功能空间的尺寸。该上限处于中等信心状态(即,对于所有$ \ delta $),并与现有的minimax和Gap依赖的下限匹配。我们将算法扩展到情节线性MDP。
translated by 谷歌翻译
尽管在理解增强学习的最小样本复杂性(RL)(在“最坏情况”的实例上学习的复杂性)方面已经取得了很多进展,但这种复杂性的衡量标准通常不会捕捉到真正的学习困难。在实践中,在“简单”的情况下,我们可能希望获得比最糟糕的实例可以实现的要好得多。在这项工作中,我们试图理解在具有线性函数近似的RL设置中学习近乎最佳策略(PAC RL)的“实例依赖性”复杂性。我们提出了一种算法,\ textsc {pedel},该算法实现了依赖于实例的复杂性的量度,这是RL中的第一个具有功能近似设置,从而捕获了每个特定问题实例的学习难度。通过一个明确的示例,我们表明\ textsc {pedel}可以在低重晶,最小值 - 最佳算法上获得可证明的收益,并且这种算法无法达到实例 - 最佳速率。我们的方法取决于基于设计的新型实验程序,该程序将勘探预算重点放在与学习近乎最佳政策最相关的“方向”上,并且可能具有独立的兴趣。
translated by 谷歌翻译
我们提出了一种乐观的基于模型的算法,Dubbed SMRL,用于通过指数族分布指定的转换模型,以D $参数指定,奖励是有界和已知的。SMRL使用得分匹配,一种无通量的密度估计技术,可以通过RIDGE回归有效地估计模型参数。在标准规律性假设下,SMRL实现$ \ tilde o(d \ sqrt {h ^ 3t})$在线遗憾,其中$ h $是每一集的长度,$ t $是互动的总数(忽略多项式依赖结构尺度参数)。
translated by 谷歌翻译
Modern Reinforcement Learning (RL) is commonly applied to practical problems with an enormous number of states, where function approximation must be deployed to approximate either the value function or the policy. The introduction of function approximation raises a fundamental set of challenges involving computational and statistical efficiency, especially given the need to manage the exploration/exploitation tradeoff. As a result, a core RL question remains open: how can we design provably efficient RL algorithms that incorporate function approximation? This question persists even in a basic setting with linear dynamics and linear rewards, for which only linear function approximation is needed.This paper presents the first provable RL algorithm with both polynomial runtime and polynomial sample complexity in this linear setting, without requiring a "simulator" or additional assumptions. Concretely, we prove that an optimistic modification of Least-Squares Value Iteration (LSVI)-a classical algorithm frequently studied in the linear setting-achieves O( √ d 3 H 3 T ) regret, where d is the ambient dimension of feature space, H is the length of each episode, and T is the total number of steps. Importantly, such regret is independent of the number of states and actions.
translated by 谷歌翻译
我们根据熵风险措施研究风险敏感的强化学习(RL)。虽然现有的作品已经建立了这个问题的非渐近遗憾担保,但它们会在上限和下限之间开放指数差距。我们确定现有算法中的缺陷及其分析,从而导致如此差距。为了解决这些缺陷,我们调查了风险敏感的Bellman方程的简单转变,我们称之为指数钟声方程。指数贝尔曼方程激励我们在风险敏感RL算法中开发对Bellman备份程序的新型分析,并进一步激励了一种新颖勘探机制的设计。我们表明,这些分析和算法创新共同导致现有的遗憾的上限。
translated by 谷歌翻译
我们研究了一种强化学习理论(RL),其中学习者在情节结束时仅收到一次二进制反馈。尽管这是理论上的极端测试案例,但它也可以说是实际应用程序的代表性,而不是在RL实践中,学习者在每个时间步骤中都会收到反馈。的确,在许多实际应用的应用程序中,例如自动驾驶汽车和机器人技术,更容易评估学习者的完整轨迹要么是“好”还是“坏”,但是更难在每个方面提供奖励信号步。为了证明在这种更具挑战性的环境中学习是可能的,我们研究了轨迹标签由未知参数模型生成的情况,并提供了一种统计和计算上有效的算法,从而实现了sublinear遗憾。
translated by 谷歌翻译
我们在随机和对抗性马尔可夫决策过程(MDP)中研究合作在线学习。也就是说,在每一集中,$ m $代理商同时与MDP互动,并共享信息以最大程度地减少他们的遗憾。我们考虑具有两种随机性的环境:\ emph {Fresh} - 在每个代理的轨迹均已采样i.i.d和\ emph {non-fresh} - 其中所有代理人共享实现(但每个代理的轨迹也受到影响)通过其自己的行动)。更确切地说,通过非志趣相投的随机性,每个成本和过渡的实现都在每个情节开始时都固定了,并且在同一时间同时采取相同行动的代理人观察到相同的成本和下一个状态。我们彻底分析了所有相关设置,强调了模型之间的挑战和差异,并证明了几乎匹配的遗憾下层和上限。据我们所知,我们是第一个考虑具有非伪造随机性或对抗性MDP的合作强化学习(RL)。
translated by 谷歌翻译