In reinforcement learning the Q-values summarize the expected future rewards that the agent will attain. However, they cannot capture the epistemic uncertainty about those rewards. In this work we derive a new Bellman operator with associated fixed point we call the `knowledge values'. These K-values compress both the expected future rewards and the epistemic uncertainty into a single value, so that high uncertainty, high reward, or both, can yield high K-values. The key principle is to endow the agent with a risk-seeking utility function that is carefully tuned to balance exploration and exploitation. When the agent follows a Boltzmann policy over the K-values it yields a Bayes regret bound of $\tilde O(L \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the total number of states, $A$ is the number of actions, and $T$ is the number of elapsed timesteps. We show deep connections of this approach to the soft-max and maximum-entropy strands of research in reinforcement learning.
translated by 谷歌翻译
We develop an extension of posterior sampling for reinforcement learning (PSRL) that is suited for a continuing agent-environment interface and integrates naturally into agent designs that scale to complex environments. The approach maintains a statistically plausible model of the environment and follows a policy that maximizes expected $\gamma$-discounted return in that model. At each time, with probability $1-\gamma$, the model is replaced by a sample from the posterior distribution over environments. For a suitable schedule of $\gamma$, we establish an $\tilde{O}(\tau S \sqrt{A T})$ bound on the Bayesian regret, where $S$ is the number of environment states, $A$ is the number of actions, and $\tau$ denotes the reward averaging time, which is a bound on the duration required to accurately estimate the average reward of any policy.
translated by 谷歌翻译
Model-free reinforcement learning (RL) algorithms, such as Q-learning, directly parameterize and update value functions or policies without explicitly modeling the environment. They are typically simpler, more flexible to use, and thus more prevalent in modern deep RL than model-based approaches. However, empirical work has suggested that model-free algorithms may require more samples to learn [7,22]. The theoretical question of "whether model-free algorithms can be made sample efficient" is one of the most fundamental questions in RL, and remains unsolved even in the basic scenario with finitely many states and actions.We prove that, in an episodic MDP setting, Q-learning with UCB exploration achieves regret Õ( √ H 3 SAT ), where S and A are the numbers of states and actions, H is the number of steps per episode, and T is the total number of steps. This sample efficiency matches the optimal regret that can be achieved by any model-based approach, up to a single √ H factor. To the best of our knowledge, this is the first analysis in the model-free setting that establishes √ T regret without requiring access to a "simulator." * The first two authors contributed equally.
translated by 谷歌翻译
我们考虑在以$ s $状态的地平线$ h $和$ a $ ACTIVE的偶发性,有限的,依赖于阶段的马尔可夫决策过程的环境中进行强化学习。代理商的性能是在与环境互动以$ t $插件互动后的遗憾来衡量的。我们提出了一种乐观的后验抽样算法(OPSRL),这是一种简单的后验抽样变体,仅需要许多后样品对数,$ h $,$ s $,$ a $和$ t $ a $ h $ s $ s $ a $ a $和$ t $一对。对于OPSRL,我们保证最多可容纳订单的高概率遗憾,$ \ wideTilde {\ mathcal {o}}}(\ sqrt {h^3sat})$忽略$ \ text {poly} \ log(hsat)$项。新型的新型技术成分是线性形式的新型抗浓缩不等式,可能具有独立感兴趣。具体而言,我们将Alfers and Dinges [1984]的Beta分布的基于正常近似的下限扩展到Dirichlet分布。我们的界限匹配订单$ \ omega(\ sqrt {h^3sat})$的下限,从而回答了Agrawal和Jia [2017b]在情节环境中提出的空旷问题。
translated by 谷歌翻译
在不确定性面前的乐观原则在整个连续决策中普遍存在,如多武装匪和加强学习(RL)等问题。为了成功,乐观的RL算法必须过度估计真正的值函数(乐观),但不是通过它不准确的(估计错误)。在表格设置中,许多最先进的方法通过在缩放到深rl时难以应变的方法产生所需的乐观。我们重新解释基于可扩展的乐观模型的算法,以解决易解噪声增强MDP。这种配方实现了竞争遗憾:$ \ tilde {\ mathcal {o}}(| \ mathcal {s} | h \ sqrt {| \ mathcal {a} | t} $在使用高斯噪音时,$ t $是环境步骤的总数。我们还探讨了这种权衡在深度RL设置中的权衡变化,我们在验证上显示估计误差明显更麻烦。但是,我们还表明,如果此错误减少,基于乐观的模型的RL算法可以在连续控制问题中匹配最先进的性能。
translated by 谷歌翻译
Modern Reinforcement Learning (RL) is commonly applied to practical problems with an enormous number of states, where function approximation must be deployed to approximate either the value function or the policy. The introduction of function approximation raises a fundamental set of challenges involving computational and statistical efficiency, especially given the need to manage the exploration/exploitation tradeoff. As a result, a core RL question remains open: how can we design provably efficient RL algorithms that incorporate function approximation? This question persists even in a basic setting with linear dynamics and linear rewards, for which only linear function approximation is needed.This paper presents the first provable RL algorithm with both polynomial runtime and polynomial sample complexity in this linear setting, without requiring a "simulator" or additional assumptions. Concretely, we prove that an optimistic modification of Least-Squares Value Iteration (LSVI)-a classical algorithm frequently studied in the linear setting-achieves O( √ d 3 H 3 T ) regret, where d is the ambient dimension of feature space, H is the length of each episode, and T is the total number of steps. Importantly, such regret is independent of the number of states and actions.
translated by 谷歌翻译
我们考虑了有多个具有不同奖励功能的利益相关者的情节强化学习问题。我们的目标是输出有关不同奖励功能在社会上公平的政策。先前的工作提出了不同的目标,即公平政策必须优化,包括最低福利和广义的基尼福利。我们首先对问题进行公理视图,并提出四个公理,任何这样的公平目标都必须满足。我们表明,纳什社会福利是一个独特的目标,它独特地满足了所有四个目标,而先前的目标无法满足所有四个公理。然后,我们考虑了基础模型,即马尔可夫决策过程未知的问题的学习版本。我们考虑到最大程度地降低对公平政策最大化的遗憾的问题,从而最大化三个不同的公平目标 - 最低限度的福利,广义基尼福利和纳什社会福利。基于乐观的计划,我们提出了一种通用的学习算法,并在三种不同的政策方面得出了遗憾。为了纳什社会福利的目的,我们还遗憾地得出了一个遗憾的遗憾,它以$ n $(代理的数量)成倍增长。最后,我们表明,为了最低限度福利的目的,对于较弱的遗憾概念,人们可以将遗憾提高到$ o(h)$。
translated by 谷歌翻译
我们提出了在表格,依赖阶段的,情节的马尔可夫决策过程中使用贝叶斯-UCBVI算法进行增强学习的:Kaufmann等人的贝叶斯-UCB算法的自然扩展。 (2012年)用于多军匪徒。我们的方法将Q值函数后部的分位数用作最佳Q值函数上的上限。对于贝叶斯-UCBVI,我们证明了一个遗憾的是$ \ wideTilde {o}(\ sqrt {h^3sat})$,其中$ h $是一集的长度,$ s $是$ s $的数量,$ a $ a $动作数量,$ t $情节数,与$ \ omega(\ sqrt {h^3sat})$符合poly-$ \ $ \ log $ enter $ h,s,s,a,a,a,a,a ,适用于足够大的$ t $的t $。据我们所知,这是第一种获得对地平线$ h $(和$ s $)的最佳依赖性的算法,而无需涉及伯恩斯坦的奖金或噪音。对于我们的分析而言,至关重要的是一种新的细粒抗浓缩,以具有独立感兴趣的加权dirichlet总和。然后,我们解释了如何轻松地将贝叶斯-UCBVI延伸到表格环境之外,从而在我们的算法和贝叶斯引导之间表现出牢固的联系(Rubin,1981)。
translated by 谷歌翻译
我们根据熵风险措施研究风险敏感的强化学习(RL)。虽然现有的作品已经建立了这个问题的非渐近遗憾担保,但它们会在上限和下限之间开放指数差距。我们确定现有算法中的缺陷及其分析,从而导致如此差距。为了解决这些缺陷,我们调查了风险敏感的Bellman方程的简单转变,我们称之为指数钟声方程。指数贝尔曼方程激励我们在风险敏感RL算法中开发对Bellman备份程序的新型分析,并进一步激励了一种新颖勘探机制的设计。我们表明,这些分析和算法创新共同导致现有的遗憾的上限。
translated by 谷歌翻译
在线强化学习(RL)中的挑战之一是代理人需要促进对环境的探索和对样品的利用来优化其行为。无论我们是否优化遗憾,采样复杂性,状态空间覆盖范围或模型估计,我们都需要攻击不同的勘探开发权衡。在本文中,我们建议在分离方法组成的探索 - 剥削问题:1)“客观特定”算法(自适应)规定哪些样本以收集到哪些状态,似乎它可以访问a生成模型(即环境的模拟器); 2)负责尽可能快地生成规定样品的“客观无关的”样品收集勘探策略。建立最近在随机最短路径问题中进行探索的方法,我们首先提供一种算法,它给出了每个状态动作对所需的样本$ B(S,a)$的样本数量,需要$ \ tilde {o} (bd + d ^ {3/2} s ^ 2 a)收集$ b = \ sum_ {s,a} b(s,a)$所需样本的$时间步骤,以$ s $各国,$ a $行动和直径$ d $。然后我们展示了这种通用探索算法如何与“客观特定的”策略配对,这些策略规定了解决各种设置的样本要求 - 例如,模型估计,稀疏奖励发现,无需无成本勘探沟通MDP - 我们获得改进或新颖的样本复杂性保证。
translated by 谷歌翻译
Epsilon-Greedy,SoftMax或Gaussian噪声等近视探索政策在某些强化学习任务中无法有效探索,但是在许多其他方面,它们的表现都很好。实际上,实际上,由于简单性,它们通常被选为最佳选择。但是,对于哪些任务执行此类政策成功?我们可以为他们的有利表现提供理论保证吗?尽管这些政策具有显着的实际重要性,但这些关键问题几乎没有得到研究。本文介绍了对此类政策的理论分析,并为通过近视探索提供了对增强学习的首次遗憾和样本复杂性。我们的结果适用于具有有限的Bellman Eluder维度的情节MDP中的基于价值功能的算法。我们提出了一种新的复杂度度量,称为近视探索差距,用Alpha表示,该差距捕获了MDP的结构属性,勘探策略和给定的值函数类别。我们表明,近视探索的样品复杂性与该数量的倒数1 / alpha^2二次地量表。我们通过具体的例子进一步证明,由于相应的动态和奖励结构,在近视探索成功的几项任务中,近视探索差距确实是有利的。
translated by 谷歌翻译
有许多可用于情节增强学习的有效算法。然而,这些算法是在假设与每个剧集相关的状态,动作和奖励的序列立即到达的假设之下,允许在与环境的各个交互之后进行策略更新。这种假设在实践中通常是不现实的,特别是在诸如医疗保健和在线推荐等领域。在本文中,我们研究了延迟反馈对近几种可释放有效算法的影响,以便在情节增强学习中遗工最小化。首先,一旦新的反馈可用,我们会考虑更新策略。使用此更新方案,我们表明遗憾的是涉及状态,措施,发作长度和预期延迟的数量的附加术语增加。这种添加剂术语根据乐观选择算法而变化。我们还表明,更新的更新政策可能会导致对延迟遗憾的改进依赖。
translated by 谷歌翻译
汤普森采样是上下文匪徒的最有效方法之一,已被推广到某些MDP设置后的后验采样。但是,现有的后验学习方法是基于模型或缺乏线性MDP以外的最坏情况的理论保证而受到限制的。本文提出了一种新的无模型后取样公式,该公式适用于具有理论保证的更通用的情节增强学习问题。我们介绍了新颖的证明技术,以表明在适当的条件下,我们的后抽样方法的最遗憾与基于优化的方法的最著名结果相匹配。在具有尺寸的线性MDP设置中,与现有基于后采样的探索算法的二次依赖性相比,我们算法的遗憾与维度线性缩放。
translated by 谷歌翻译
我们研究了受限的强化学习问题,其中代理的目的是最大程度地提高预期的累积奖励,从而受到对实用程序函数的预期总价值的约束。与现有的基于模型的方法或无模型方法伴随着“模拟器”,我们旨在开发第一个无模型的无模拟算法,即使在大规模系统中,也能够实现sublinear遗憾和透明度的约束侵犯。为此,我们考虑具有线性函数近似的情节约束决策过程,其中过渡动力学和奖励函数可以表示为某些已知功能映射的线性函数。我们表明$ \ tilde {\ mathcal {o}}(\ sqrt {d^3h^3t})$遗憾和$ \ tilde {\ tillcal {\ mathcal {o}}(\ sqrt {d^3h^3ht})$约束$约束$约束可以实现违规范围,其中$ d $是功能映射的尺寸,$ h $是情节的长度,而$ t $是总数的总数。我们的界限是在没有明确估计未知过渡模型或需要模拟器的情况下达到的,并且仅通过特征映射的维度依赖于状态空间。因此,即使国家的数量进入无穷大,我们的界限也会存在。我们的主要结果是通过标准LSVI-UCB算法的新型适应来实现的。特别是,我们首先将原始二次优化引入LSVI-UCB算法中,以在遗憾和违反约束之间取得平衡。更重要的是,我们使用软马克斯政策取代了LSVI-UCB中的状态行动功能的标准贪婪选择。事实证明,这对于通过其近似平滑度的权衡来确定受约束案例的统一浓度是关键。我们还表明,一个人可以达到均匀的约束违规行为,同时仍然保持相同的订单相对于$ t $。
translated by 谷歌翻译
我们认为在情节环境中的强化学习(RL)中的遗憾最小化问题。在许多实际的RL环境中,状态和动作空间是连续的或非常大的。现有方法通过随机过渡模型的低维表示或$ q $ functions的近似值来确定遗憾的保证。但是,对国家价值函数的函数近似方案的理解基本上仍然缺失。在本文中,我们提出了一种基于在线模型的RL算法,即CME-RL,该算法将过渡分布的表示形式学习为嵌入在复制的内核希尔伯特领域中的嵌入,同时仔细平衡了利用探索 - 探索权衡取舍。我们通过证明频繁的(最糟糕的)遗憾结束了$ \ tilde {o} \ big(h \ gamma_n \ sqrt {n} \ big)$ \ footnote {$ footnote {$ tilde {$ o}(\ cdot)$仅隐藏绝对常数和poly-logarithmic因素。},其中$ h $是情节长度,$ n $是时间步长的总数,$ \ gamma_n $是信息理论数量国家行动特征空间的有效维度。我们的方法绕过了估计过渡概率的需求,并适用于可以定义内核的任何域。它还为内核方法的一般理论带来了新的见解,以进行近似推断和RL遗憾的最小化。
translated by 谷歌翻译
我们在非静止线性(AKA低级别)马尔可夫决策过程(MDP)中研究了集中加强学习,即奖励和转换内核都是关于给定特征映射的线性,并且被允许缓慢或突然演变时间。对于此问题设置,我们提出了一种基于加权最小二乘值的乐观模型算法的Opt-WLSVI,其使用指数权重来平滑地忘记过去远远的数据。我们表明我们的算法在每次竞争最佳政策时,实现了由$ \ widetilde {\ mathcal {o}}的上部界限的遗憾(d ^ {5/4} h ^ 2 \ delta ^ {1 / 4} k ^ {3/4})$何地在$ d $是特征空间的尺寸,$ h $是规划地平线,$ k $是剧集的数量和$ \ delta $是一个合适的衡量标准MDP的非固定性。此外,我们指出了在忘记以前作品的非静止线性匪徒环境中忘记策略的技术差距,并提出了修复其遗憾分析。
translated by 谷歌翻译
最大化马尔可夫和固定的累积奖励函数,即在国家行动对和时间独立于时间上定义,足以在马尔可夫决策过程(MDP)中捕获多种目标。但是,并非所有目标都可以以这种方式捕获。在本文中,我们研究了凸MDP,其中目标表示为固定分布的凸功能,并表明它们不能使用固定奖励函数进行配制。凸MDP将标准加强学习(RL)问题提出概括为一个更大的框架,其中包括许多受监督和无监督的RL问题,例如学徒学习,约束MDP和所谓的“纯探索”。我们的方法是使用Fenchel二重性将凸MDP问题重新将凸MDP问题重新制定为涉及政策和成本(负奖励)的最小游戏。我们提出了一个用于解决此问题的元偏金属,并表明它统一了文献中许多现有的算法。
translated by 谷歌翻译
We consider a multi-agent episodic MDP setup where an agent (leader) takes action at each step of the episode followed by another agent (follower). The state evolution and rewards depend on the joint action pair of the leader and the follower. Such type of interactions can find applications in many domains such as smart grids, mechanism design, security, and policymaking. We are interested in how to learn policies for both the players with provable performance guarantee under a bandit feedback setting. We focus on a setup where both the leader and followers are {\em non-myopic}, i.e., they both seek to maximize their rewards over the entire episode and consider a linear MDP which can model continuous state-space which is very common in many RL applications. We propose a {\em model-free} RL algorithm and show that $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret bounds can be achieved for both the leader and the follower, where $d$ is the dimension of the feature mapping, $H$ is the length of the episode, and $T$ is the total number of steps under the bandit feedback information setup. Thus, our result holds even when the number of states becomes infinite. The algorithm relies on {\em novel} adaptation of the LSVI-UCB algorithm. Specifically, we replace the standard greedy policy (as the best response) with the soft-max policy for both the leader and the follower. This turns out to be key in establishing uniform concentration bound for the value functions. To the best of our knowledge, this is the first sub-linear regret bound guarantee for the Markov games with non-myopic followers with function approximation.
translated by 谷歌翻译
当他们更喜欢$ \ texit {exploit} $时,您如何激励自我兴趣的代理到$ \ texit {探索} $?我们考虑复杂的探索问题,其中每个代理面临相同(但未知)MDP。与传统的加固学习配方相比,代理商控制了政策的选择,而算法只能发出建议。然而,该算法控制信息流,并且可以通过信息不对称激励代理探索。我们设计一种算法,探讨MDP中的所有可达状态。我们达到了类似于先前研究的静态,无国籍探索问题中激励探索的保证担保。据我们所知,这是第一个考虑在有状态,强化学习环境中设计的工作。
translated by 谷歌翻译
本文研究了钢筋学习中随机价值函数的遗为最小化。在表格有限地平线马尔可夫决策过程中,我们引入了一种典型的汤普森采样(TS)-like算法的剪切变体,随机最小二乘值迭代(RLSVI)。我们的$ \ tilde {\ mathrm {o}}(h ^ 2s \ sqrt {at})$高概率最坏情况后悔绑定改善了rlsvi的先前最锐化的最糟糕的遗憾界限,并匹配现有的状态 - 基于最糟糕的TS的遗憾界限。
translated by 谷歌翻译