视觉奇数任务被认为是对人类的普遍独立的分析智能测试。人工智能的进步导致了重要的突破,但是与人类在此类分析智能任务上竞争仍然具有挑战性,并且通常诉诸于非生物学上的架构。我们提出了一个具有生物学现实的系统,该系统从合成眼动运动中接收输入 - 扫视,并与结合新皮质神经元动力学的神经元一起处理它们。我们介绍了一个程序生成的视觉奇数数据集,以训练扩展常规关系网络和我们建议的系统的体系结构。两种方法都超过了人类的准确性,我们发现两者都具有相同的基本推理基本机制。最后,我们表明,具有生物学启发的网络可实现卓越的准确性,学习速度更快,所需的参数比常规网络更少。
translated by 谷歌翻译
穗状花序的神经形状硬件占据了深度神经网络(DNN)的更节能实现的承诺,而不是GPU的标准硬件。但这需要了解如何在基于事件的稀疏触发制度中仿真DNN,否则能量优势丢失。特别地,解决序列处理任务的DNN通常采用难以使用少量尖峰效仿的长短期存储器(LSTM)单元。我们展示了许多生物神经元的面部,在每个尖峰后缓慢的超积极性(AHP)电流,提供了有效的解决方案。 AHP电流可以轻松地在支持多舱神经元模型的神经形状硬件中实现,例如英特尔的Loihi芯片。滤波近似理论解释为什么AHP-Neurons可以模拟LSTM单元的功能。这产生了高度节能的时间序列分类方法。此外,它为实现了非常稀疏的大量大型DNN来实现基础,这些大型DNN在文本中提取单词和句子之间的关系,以便回答有关文本的问题。
translated by 谷歌翻译
尖峰神经网络(SNN)引起了脑启发的人工智能和计算神经科学的广泛关注。它们可用于在多个尺度上模拟大脑中的生物信息处理。更重要的是,SNN是适当的抽象水平,可以将大脑和认知的灵感带入人工智能。在本文中,我们介绍了脑启发的认知智力引擎(Braincog),用于创建脑启发的AI和脑模拟模型。 Braincog将不同类型的尖峰神经元模型,学习规则,大脑区域等作为平台提供的重要模块。基于这些易于使用的模块,BrainCog支持各种受脑启发的认知功能,包括感知和学习,决策,知识表示和推理,运动控制和社会认知。这些受脑启发的AI模型已在各种受监督,无监督和强化学习任务上有效验证,并且可以用来使AI模型具有多种受脑启发的认知功能。为了进行大脑模拟,Braincog实现了决策,工作记忆,神经回路的结构模拟以及小鼠大脑,猕猴大脑和人脑的整个大脑结构模拟的功能模拟。一个名为BORN的AI引擎是基于Braincog开发的,它演示了如何将Braincog的组件集成并用于构建AI模型和应用。为了使科学追求解码生物智能的性质并创建AI,Braincog旨在提供必要且易于使用的构件,并提供基础设施支持,以开发基于脑部的尖峰神经网络AI,并模拟认知大脑在多个尺度上。可以在https://github.com/braincog-x上找到Braincog的在线存储库。
translated by 谷歌翻译
Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamic physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Our work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.
translated by 谷歌翻译
为了在专门的神经形态硬件中进行节能计算,我们提出了尖峰神经编码,这是基于预测性编码理论的人工神经模型家族的实例化。该模型是同类模型,它是通过在“猜测和检查”的永无止境过程中运行的,神经元可以预测彼此的活动值,然后调整自己的活动以做出更好的未来预测。我们系统的互动性,迭代性质非常适合感官流预测的连续时间表述,并且如我们所示,模型的结构产生了局部突触更新规则,可以用来补充或作为在线峰值定位的替代方案依赖的可塑性。在本文中,我们对模型的实例化进行了实例化,该模型包括泄漏的集成和火灾单元。但是,我们系统所在的框架自然可以结合更复杂的神经元,例如Hodgkin-Huxley模型。我们在模式识别方面的实验结果证明了当二进制尖峰列车是通信间通信的主要范式时,模型的潜力。值得注意的是,尖峰神经编码在分类绩效方面具有竞争力,并且在从任务序列中学习时会降低遗忘,从而提供了更经济的,具有生物学上的替代品,可用于流行的人工神经网络。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
人类在解析和灵活地理解复杂的视觉场景的能力方面继续大大胜过现代AI系统。注意力和记忆是已知的两个系统,它们在我们选择性地维护和操纵与行为相关的视觉信息的能力中起着至关重要的作用,以解决一些最具挑战性的视觉推理任务。在这里,我们介绍了一种新颖的体系结构,用于视觉推理的认知科学文献,基于记忆和注意力(视觉)推理(MAREO)架构。 Mareo实例化了一个主动视觉理论,该理论认为大脑通过学习结合以前学习的基本视觉操作以形成更复杂的视觉例程来在构成中解决复杂的视觉推理问题。 Mareo学会通过注意力转移序列来解决视觉推理任务,以路由并通过多头变压器模块将与任务相关的视觉信息保持在存储库中。然后,通过训练有素的专用推理模块来部署视觉例程,以判断场景中对象之间的各种关系。对四种推理任务的实验证明了Mareo以强大和样品有效的方式学习视觉例程的能力。
translated by 谷歌翻译
人脑中的神经网络如何代表常识性知识,而完整的相关推理任务是神经科学,认知科学,心理学和人工智能的重要研究主题。尽管使用固定长度向量代表符号的传统人工神经网络在某些特定任务中取得了良好的表现,但它仍然是一个黑匣子,缺乏可解释性,远非人类对世界的看法。受神经科学中的祖母细胞假设的启发,这项工作调查了可以将编码和峰值定时依赖性可塑性(STDP)机制的人群整合到峰值神经网络的学习中,以及神经元的人群如何通过指导符号来指导符号在不同的神经元种群之间完成顺序触发。不同社区的神经元种群共同构成了整个常识知识图,形成了巨大的图形尖峰神经网络。此外,我们引入了奖励调节的峰值时间依赖性可塑性(R-STDP)机制,以模拟生物增强学习过程并相应地完成相关推理任务,比图形卷积人工神经网络实现了可比的准确性和更快的收敛速度。对于神经科学和认知科学领域,本文的工作为进一步探索人脑代表常识知识的方式提供了计算建模的基础。对于人工智能领域,本文通过构建常识性知识表示并推理具有固体生物学合理性的尖峰神经网络,指出了实现更健壮和可解释的神经网络的探索方向。
translated by 谷歌翻译
人类视野的一个基本组成部分是我们解析复杂的视觉场景并判断其组成物体之间的关系的能力。近年来,随着最先进的系统在其中一些基准上达到人类的准确性,近年来,视觉推理的AI基准驱动了快速进步。然而,就样本效率而言,人类和AI系统学习新的视觉推理任务的样本效率仍然存在。人类在学习方面的非凡效率至少部分归因于其利用组成性的能力,以便他们可以在学习新任务时有效利用先前获得的知识。在这里,我们介绍了一种新颖的视觉推理基准组成视觉关系(CVR),以推动发展更多数据有效学习算法的进步。我们从流体智能和非语言推理测试中汲取灵感,并描述一种新的方法,用于创建抽象规则和相关图像数据集的组成。我们提出的基准包括跨任务规则的样本效率,概括和转移的度量,以及利用组合性的能力。我们系统地评估现代神经体系结构,发现令人惊讶的是,在大多数数据制度中,卷积架构在所有性能指标中都超过了基于变压器的体系结构。但是,即使在使用自学意见书学习信息性的视觉表示之后,与人类相比,所有计算模型的数据效率要少得多。总体而言,我们希望我们的挑战能够激发人们对可以学会利用构图朝着更高效学习的神经体系结构发展的兴趣。
translated by 谷歌翻译
我们提出了一种新颖的计算模型“ Savir-T”,用于在Raven的渐进式矩阵(RPM)中体现的视觉推理问题。我们的模型考虑了拼图中每个图像中视觉元素的显式空间语义,编码为时空视标,并了解内部图像以及图像的依赖依赖性依赖性,与视觉推理任务高度相关。通过基于变压器的SAVIR-T体系结构建模的令牌关系,提取组(行或列)通过利用组规则相干性并将其用作电感偏置来提取前两行中的基本规则表示形式,从而引起了提取组(行或列)驱动的表示形式(或列)RPM中的每个令牌。我们使用此关系表示形式来找到正确的选择图像,该图像完成了RPM的最后一行或列。在两个合成RPM基准测试中进行了广泛的实验,包括Raven,I-Raven,Raven-Fair和PGM以及基于自然图像的“ V-Prom”,这表明Savir-T为视觉设定了新的最新时间推理,超过了先前模型的性能。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
这是第两部分综合调查的第二部分,专门用于计算框架,最常见于名称超高规范计算和矢量符号架构(HDC / VSA)。这两个名称都指的是一系列使用高维分布式表示的计算模型,并依赖于其关键操作的代数属性来结合结构化符号表示和矢量分布式表示的优点。全息减少的表示是一种有影响力的HDC / VSA模型,在机器学习域中是众所周知的,通常用于指整个家庭。但是,为了一致性,我们使用HDC / VSA来参考该区域。该调查的第I部分涵盖了该地区的基本方面,例如历史背景,导致HDC / VSA的开发,任何HDC / VSA模型的关键要素,已知的HDC / VSA模型,以及将各种类型的输入数据转换为高 - 适用于HDC / VSA的尺寸载体。第二部分调查现有的应用程序,HDC / VSA在认知计算和架构中的作用,以及未来工作的方向。大多数应用程序位于机器学习/人工智能域内,但我们还涵盖其他应用程序来提供彻底的照片。该调查是对新人和从业者有用的。
translated by 谷歌翻译
动作识别是人工智能的激动人心的研究途径,因为它可能是新兴工业领域(例如机器人视觉和汽车)的游戏规则。但是,由于巨大的计算成本和效率低下的学习,当前的深度学习面临着此类应用的主要挑战。因此,我们开发了一种新型的基于脑启发的尖峰神经网络(SNN)的系统,标题为用于在线动作学习的尖峰门控流(SGF)。开发的系统由多个以分层方式组装的SGF单元组成。单个SGF单元涉及三层:特征提取层,事件驱动的层和基于直方图的训练层。为了展示开发的系统功能,我们采用标准的动态视觉传感器(DVS)手势分类作为基准。结果表明,我们可以达到87.5%的精度,这与深度学习(DL)相当,但在较小的培训/推理数据编号比率为1.5:1。在学习过程中,只需要一个单个培训时代。同时,据我们所知,这是基于非回复算法的SNN中最高准确性。最后,我们结论了开发网络的几乎没有的学习范式:1)基于层次结构的网络设计涉及人类的先验知识; 2)用于基于内容的全局动态特征检测的SNN。
translated by 谷歌翻译
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
translated by 谷歌翻译
人们容易概括到新型域和刺激的知识。我们提出了一种在计算模型中实例化的理论,基于跨域人类中的跨域泛化是对结构化(即,象征性)关系表示的模拟推断的情况。该模型是LISA和关系推论和学习的DORA模型的延伸。生成的模型在没有监控的情况下,从非关系输入中的关系和格式(即结构)(即,结构)既与强化学习的容量增强,利用这些表示来学习单个域,然后向新域推广首先通过模拟推理(即零拍摄学习)。我们展示了模型从各种简单的视觉刺激学习结构化关系表示的能力,并在视频游戏(突破和乒乓球)和几个心理任务之间进行跨域泛化。我们展示了模型的轨迹在学到关系时,旨在让孩子的轨迹镜头紧密地镜子,从文学中占据了儿童推理和类比制作的文献中的现象。该模型在域之间的概括能力展示了在其基础关系结构方面代表域的灵活性,而不是简单地就其投入和产出之间的统计关系而言。
translated by 谷歌翻译
近年来,随着新颖的策略和应用,神经网络一直在迅速扩展。然而,尽管不可避免地会针对关键应用程序来解决这些挑战,例如神经网络技术诸如神经网络技术中仍未解决诸如神经网络技术的挑战。已经尝试通过用符号表示来表示和嵌入域知识来克服神经网络计算中的挑战。因此,出现了神经符号学习(Nesyl)概念,其中结合了符号表示的各个方面,并将常识带入神经网络(Nesyl)。在可解释性,推理和解释性至关重要的领域中,例如视频和图像字幕,提问和推理,健康信息学和基因组学,Nesyl表现出了有希望的结果。这篇综述介绍了一项有关最先进的Nesyl方法的全面调查,其原理,机器和深度学习算法的进步,诸如Opthalmology之类的应用以及最重要的是该新兴领域的未来观点。
translated by 谷歌翻译
从大脑的事件驱动和稀疏的尖峰特征中受益,尖峰神经网络(SNN)已成为人工神经网络(ANN)的一种节能替代品。但是,SNNS和ANN之间的性能差距很长一段时间以来一直在延伸SNNS。为了利用SNN的全部潜力,我们研究了SNN中注意机制的影响。我们首先使用插件套件提出了我们的注意力,称为多维关注(MA)。然后,提出了一种新的注意力SNN体系结构,并提出了端到端训练,称为“ ma-snn”,该体系结构分别或同时或同时延伸了沿时间,通道以及空间维度的注意力重量。基于现有的神经科学理论,我们利用注意力重量来优化膜电位,进而以数据依赖性方式调节尖峰响应。 MA以可忽略的其他参数为代价,促进了香草SNN,以实现更稀疏的尖峰活动,更好的性能和能源效率。实验是在基于事件的DVS128手势/步态动作识别和Imagenet-1K图像分类中进行的。在手势/步态上,尖峰计数减少了84.9%/81.6%,任务准确性和能源效率提高了5.9%/4.7%和3.4 $ \ times $/3.2 $ \ times $。在ImagEnet-1K上,我们在单个/4步res-SNN-104上获得了75.92%和77.08%的TOP-1精度,这是SNN的最新结果。据我们所知,这是SNN社区与大规模数据集中的ANN相比,SNN社区取得了可比甚至更好的性能。我们的工作阐明了SNN作为支持SNN的各种应用程序的一般骨干的潜力,在有效性和效率之间取得了巨大平衡。
translated by 谷歌翻译
在过去的几十年中,人工智能领域大大进展,灵感来自生物学和神经科学领域的发现。这项工作的想法是由来自传入和横向/内部联系的人脑中皮质区域的自组织过程的过程启发。在这项工作中,我们开发了一个原始的脑激发神经模型,将自组织地图(SOM)和Hebbian学习在重新参与索马里(RESOM)模型中。该框架应用于多模式分类问题。与基于未经监督的学习的现有方法相比,该模型增强了最先进的结果。这项工作还通过在名为SPARP(自配置3D蜂窝自适应平台)的专用FPGA的平台上的模拟结果和硬件执行,演示了模型的分布式和可扩展性。头皮板可以以模块化方式互连,以支持神经模型的结构。这种统一的软件和硬件方法使得能够缩放处理并允许来自多个模态的信息进行动态合并。硬件板上的部署提供了在多个设备上并行执行的性能结果,通过专用串行链路在每个板之间的通信。由于多模式关联,所提出的统一架构,由RESOM模型和头皮硬件平台组成的精度显着提高,与集中式GPU实现相比,延迟和功耗之间的良好折衷。
translated by 谷歌翻译
Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to wellinformed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.
translated by 谷歌翻译
神经形态计算是一个新兴的研究领域,旨在通过整合来自神经科学和深度学习等多学科的理论和技术来开发新的智能系统。当前,已经为相关字段开发了各种软件框架,但是缺乏专门用于基于Spike的计算模型和算法的有效框架。在这项工作中,我们提出了一个基于Python的尖峰神经网络(SNN)模拟和培训框架,又名Spaic,旨在支持脑启发的模型和算法研究,并与深度学习和神经科学的特征集成在一起。为了整合两个压倒性学科的不同方法,以及灵活性和效率之间的平衡,SpaiC设计采用神经科学风格的前端和深度学习后端结构设计。我们提供了广泛的示例,包括神经回路模拟,深入的SNN学习和神经形态应用,展示了简洁的编码样式和框架的广泛可用性。 Spaic是一个专用的基于SPIKE的人工智能计算平台,它将显着促进新模型,理论和应用的设计,原型和验证。具有用户友好,灵活和高性能,它将有助于加快神经形态计算研究的快速增长和广泛的适用性。
translated by 谷歌翻译