在过去的几十年中,人工智能领域大大进展,灵感来自生物学和神经科学领域的发现。这项工作的想法是由来自传入和横向/内部联系的人脑中皮质区域的自组织过程的过程启发。在这项工作中,我们开发了一个原始的脑激发神经模型,将自组织地图(SOM)和Hebbian学习在重新参与索马里(RESOM)模型中。该框架应用于多模式分类问题。与基于未经监督的学习的现有方法相比,该模型增强了最先进的结果。这项工作还通过在名为SPARP(自配置3D蜂窝自适应平台)的专用FPGA的平台上的模拟结果和硬件执行,演示了模型的分布式和可扩展性。头皮板可以以模块化方式互连,以支持神经模型的结构。这种统一的软件和硬件方法使得能够缩放处理并允许来自多个模态的信息进行动态合并。硬件板上的部署提供了在多个设备上并行执行的性能结果,通过专用串行链路在每个板之间的通信。由于多模式关联,所提出的统一架构,由RESOM模型和头皮硬件平台组成的精度显着提高,与集中式GPU实现相比,延迟和功耗之间的良好折衷。
translated by 谷歌翻译
尖峰神经网络(SNN)提供了一个新的计算范式,能够高度平行,实时处理。光子设备是设计与SNN计算范式相匹配的高带宽,平行体系结构的理想选择。 CMO和光子元件的协整允许将低损耗的光子设备与模拟电子设备结合使用,以更大的非线性计算元件的灵活性。因此,我们在整体硅光子学(SIPH)过程上设计和模拟了光电尖峰神经元电路,该过程复制了超出泄漏的集成和火(LIF)之外有用的尖峰行为。此外,我们探索了两种学习算法,具有使用Mach-Zehnder干涉法(MZI)网格作为突触互连的片上学习的潜力。实验证明了随机反向传播(RPB)的变体,并在简单分类任务上与标准线性回归的性能相匹配。同时,将对比性HEBBIAN学习(CHL)规则应用于由MZI网格组成的模拟神经网络,以进行随机输入输出映射任务。受CHL训练的MZI网络的性能比随机猜测更好,但不符合理想神经网络的性能(没有MZI网格施加的约束)。通过这些努力,我们证明了协调的CMO和SIPH技术非常适合可扩展的SNN计算体系结构的设计。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
尖峰神经网络(SNN)引起了脑启发的人工智能和计算神经科学的广泛关注。它们可用于在多个尺度上模拟大脑中的生物信息处理。更重要的是,SNN是适当的抽象水平,可以将大脑和认知的灵感带入人工智能。在本文中,我们介绍了脑启发的认知智力引擎(Braincog),用于创建脑启发的AI和脑模拟模型。 Braincog将不同类型的尖峰神经元模型,学习规则,大脑区域等作为平台提供的重要模块。基于这些易于使用的模块,BrainCog支持各种受脑启发的认知功能,包括感知和学习,决策,知识表示和推理,运动控制和社会认知。这些受脑启发的AI模型已在各种受监督,无监督和强化学习任务上有效验证,并且可以用来使AI模型具有多种受脑启发的认知功能。为了进行大脑模拟,Braincog实现了决策,工作记忆,神经回路的结构模拟以及小鼠大脑,猕猴大脑和人脑的整个大脑结构模拟的功能模拟。一个名为BORN的AI引擎是基于Braincog开发的,它演示了如何将Braincog的组件集成并用于构建AI模型和应用。为了使科学追求解码生物智能的性质并创建AI,Braincog旨在提供必要且易于使用的构件,并提供基础设施支持,以开发基于脑部的尖峰神经网络AI,并模拟认知大脑在多个尺度上。可以在https://github.com/braincog-x上找到Braincog的在线存储库。
translated by 谷歌翻译
This chapter sheds light on the synaptic organization of the brain from the perspective of computational neuroscience. It provides an introductory overview on how to account for empirical data in mathematical models, implement them in software, and perform simulations reflecting experiments. This path is demonstrated with respect to four key aspects of synaptic signaling: the connectivity of brain networks, synaptic transmission, synaptic plasticity, and the heterogeneity across synapses. Each step and aspect of the modeling and simulation workflow comes with its own challenges and pitfalls, which are highlighted and addressed in detail.
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
更具体地说,神经系统能够简单有效地解决复杂的问题,超过现代计算机。在这方面,神经形态工程是一个研究领域,重点是模仿控制大脑的基本原理,以开发实现此类计算能力的系统。在该领域中,生物启发的学习和记忆系统仍然是要解决的挑战,这就是海马涉及的地方。正是大脑的区域充当短期记忆,从而从大脑皮层的所有感觉核中学习,非结构化和快速存储信息及其随后的回忆。在这项工作中,我们提出了一个基于海马的新型生物启发的记忆模型,具有学习记忆的能力,从提示中回顾它们(与其他内容相关的记忆的一部分),甚至在尝试时忘记记忆通过相同的提示学习其他人。该模型已在使用尖峰神经网络上在大型摩托车硬件平台上实现,并进行了一组实验和测试以证明其正确且预期的操作。所提出的基于SPIKE的内存模型仅在接收输入,能提供节能的情况下才能生成SPIKES,并且需要7个时间步,用于学习步骤和6个时间段来召回以前存储的存储器。这项工作介绍了基于生物启发的峰值海马记忆模型的第一个硬件实现,为开发未来更复杂的神经形态系统的发展铺平了道路。
translated by 谷歌翻译
Understanding how biological neural networks carry out learning using spike-based local plasticity mechanisms can lead to the development of powerful, energy-efficient, and adaptive neuromorphic processing systems. A large number of spike-based learning models have recently been proposed following different approaches. However, it is difficult to assess if and how they could be mapped onto neuromorphic hardware, and to compare their features and ease of implementation. To this end, in this survey, we provide a comprehensive overview of representative brain-inspired synaptic plasticity models and mixed-signal CMOS neuromorphic circuits within a unified framework. We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity, and we identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules. We provide a common definition of a locality principle based on pre- and post-synaptic neuron information, which we propose as a fundamental requirement for physical implementations of synaptic plasticity. Based on this principle, we compare the properties of these models within the same framework, and describe the mixed-signal electronic circuits that implement their computing primitives, pointing out how these building blocks enable efficient on-chip and online learning in neuromorphic processing systems.
translated by 谷歌翻译
神经形态计算是一个新兴的研究领域,旨在通过整合来自神经科学和深度学习等多学科的理论和技术来开发新的智能系统。当前,已经为相关字段开发了各种软件框架,但是缺乏专门用于基于Spike的计算模型和算法的有效框架。在这项工作中,我们提出了一个基于Python的尖峰神经网络(SNN)模拟和培训框架,又名Spaic,旨在支持脑启发的模型和算法研究,并与深度学习和神经科学的特征集成在一起。为了整合两个压倒性学科的不同方法,以及灵活性和效率之间的平衡,SpaiC设计采用神经科学风格的前端和深度学习后端结构设计。我们提供了广泛的示例,包括神经回路模拟,深入的SNN学习和神经形态应用,展示了简洁的编码样式和框架的广泛可用性。 Spaic是一个专用的基于SPIKE的人工智能计算平台,它将显着促进新模型,理论和应用的设计,原型和验证。具有用户友好,灵活和高性能,它将有助于加快神经形态计算研究的快速增长和广泛的适用性。
translated by 谷歌翻译
建立一种人类综合人工认知系统,即人工综合情报(AGI),是人工智能(AI)领域的圣杯。此外,实现人工系统实现认知发展的计算模型将是脑和认知科学的优秀参考。本文介绍了一种通过集成元素认知模块来开发认知架构的方法,以实现整个模块的训练。这种方法是基于两个想法:(1)脑激发AI,学习人类脑建筑以构建人类级智能,(2)概率的生成模型(PGM)基础的认知系统,为发展机器人开发认知系统通过整合PGM。发展框架称为全大脑PGM(WB-PGM),其根本地不同于现有的认知架构,因为它可以通过基于感官电机信息的系统不断学习。在这项研究中,我们描述了WB-PGM的基本原理,基于PGM的元素认知模块的当前状态,与人类大脑的关系,对认知模块的整合的方法,以及未来的挑战。我们的研究结果可以作为大脑研究的参考。随着PGMS描述变量之间的明确信息关系,本说明书提供了从计算科学到脑科学的可解释指导。通过提供此类信息,神经科学的研究人员可以向AI和机器人提供的研究人员提供反馈,以及目前模型缺乏对大脑的影响。此外,它可以促进神经认知科学的研究人员以及AI和机器人的合作。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
我们提出了一种新的四管齐下的方法,在文献中首次建立消防员的情境意识。我们构建了一系列深度学习框架,彼此之叠,以提高消防员在紧急首次响应设置中进行的救援任务的安全性,效率和成功完成。首先,我们使用深度卷积神经网络(CNN)系统,以实时地分类和识别来自热图像的感兴趣对象。接下来,我们将此CNN框架扩展了对象检测,跟踪,分割与掩码RCNN框架,以及具有多模级自然语言处理(NLP)框架的场景描述。第三,我们建立了一个深入的Q学习的代理,免受压力引起的迷失方向和焦虑,能够根据现场消防环境中观察和存储的事实来制定明确的导航决策。最后,我们使用了一种低计算无监督的学习技术,称为张量分解,在实时对异常检测进行有意义的特征提取。通过这些临时深度学习结构,我们建立了人工智能系统的骨干,用于消防员的情境意识。要将设计的系统带入消防员的使用,我们设计了一种物理结构,其中处理后的结果被用作创建增强现实的投入,这是一个能够建议他们所在地的消防员和周围的关键特征,这对救援操作至关重要在手头,以及路径规划功能,充当虚拟指南,以帮助迷彩的第一个响应者恢复安全。当组合时,这四种方法呈现了一种新颖的信息理解,转移和综合方法,这可能会大大提高消防员响应和功效,并降低寿命损失。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
预测性编码提供了对皮质功能的潜在统一说明 - 假设大脑的核心功能是最小化有关世界生成模型的预测错误。该理论与贝叶斯大脑框架密切相关,在过去的二十年中,在理论和认知神经科学领域都产生了重大影响。基于经验测试的预测编码的改进和扩展的理论和数学模型,以及评估其在大脑中实施的潜在生物学合理性以及该理论所做的具体神经生理学和心理学预测。尽管存在这种持久的知名度,但仍未对预测编码理论,尤其是该领域的最新发展进行全面回顾。在这里,我们提供了核心数学结构和预测编码的逻辑的全面综述,从而补充了文献中最新的教程。我们还回顾了该框架中的各种经典和最新工作,从可以实施预测性编码的神经生物学现实的微电路到预测性编码和广泛使用的错误算法的重新传播之间的紧密关系,以及对近距离的调查。预测性编码和现代机器学习技术之间的关系。
translated by 谷歌翻译
近年来,尖峰神经网络(SNN)由于其丰富的时空动力学,各种编码方法和事件驱动的特征而自然拟合神经形态硬件,因此在脑启发的智能上受到了广泛的关注。随着SNN的发展,受到脑科学成就启发和针对人工通用智能的新兴研究领域的脑力智能变得越来越热。本文回顾了最新进展,并讨论了来自五个主要研究主题的SNN的新领域,包括基本要素(即尖峰神经元模型,编码方法和拓扑结构),神经形态数据集,优化算法,软件,软件和硬件框架。我们希望我们的调查能够帮助研究人员更好地了解SNN,并激发新作品以推进这一领域。
translated by 谷歌翻译
这篇理论文章研究了如何在计算机中构建类似人类的工作记忆和思维过程。应该有两个工作记忆存储,一个类似于关联皮层中的持续点火,另一个类似于大脑皮层中的突触增强。这些商店必须通过环境刺激或内部处理产生的新表示不断更新。它们应该连续更新,并以一种迭代的方式进行更新,这意味着在下一个状态下,应始终保留一组共同工作中的某些项目。因此,工作记忆中的一组概念将随着时间的推移逐渐发展。这使每个状态都是对先前状态的修订版,并导致连续的状态与它们所包含的一系列表示形式重叠和融合。随着添加新表示形式并减去旧表示形式,在这些更改过程中,有些保持活跃几秒钟。这种持续活动,类似于人工复发性神经网络中使用的活动,用于在整个全球工作区中传播激活能量,以搜索下一个关联更新。结果是能够朝着解决方案或目标前进的联想连接的中间状态链。迭代更新在这里概念化为信息处理策略,一种思想流的计算和神经生理决定因素以及用于设计和编程人工智能的算法。
translated by 谷歌翻译
The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 3rd International Workshop on Reading Music Systems, held in Alicante on the 23rd of July 2021.
translated by 谷歌翻译
In the brain, information is encoded, transmitted and used to inform behaviour at the level of timing of action potentials distributed over population of neurons. To implement neural-like systems in silico, to emulate neural function, and to interface successfully with the brain, neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain. To facilitate the cross-talk between neuromorphic engineering and neuroscience, in this Review we first critically examine and summarize emerging recent findings about how population of neurons encode and transmit information. We examine the effects on encoding and readout of information for different features of neural population activity, namely the sparseness of neural representations, the heterogeneity of neural properties, the correlations among neurons, and the time scales (from short to long) at which neurons encode information and maintain it consistently over time. Finally, we critically elaborate on how these facts constrain the design of information coding in neuromorphic circuits. We focus primarily on the implications for designing neuromorphic circuits that communicate with the brain, as in this case it is essential that artificial and biological neurons use compatible neural codes. However, we also discuss implications for the design of neuromorphic systems for implementation or emulation of neural computation.
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译