作为一般类型的机器学习方法,人工神经网络已在许多模式识别和数据分析任务中建立了最先进的基准。在各种神经网络体系结构中,多项式神经网络(PNN)最近已证明可以通过神经切线核分析进行分析,并且在图像生成和面部识别方面尤其有效。但是,获得对PNNS的计算和样本复杂性的理论见解仍然是一个开放的问题。在本文中,我们将先前文献中的分析扩展到PNN,并获得有关PNNS样品复杂性的新结果,该结果在解释PNN的概括能力方面提供了一些见解。
translated by 谷歌翻译
我们研究神经网络的基于规范的统一收敛范围,旨在密切理解它们如何受到规范约束的架构和类型的影响,对于简单的标量价值一类隐藏的一层网络,并在其中界定了输入。欧几里得规范。我们首先证明,通常,控制隐藏层重量矩阵的光谱规范不足以获得均匀的收敛保证(与网络宽度无关),而更强的Frobenius Norm Control是足够的,扩展并改善了以前的工作。在证明构造中,我们识别和分析了两个重要的设置,在这些设置中(可能令人惊讶)仅光谱规范控制就足够了:首先,当网络的激活函数足够平滑时(结果扩展到更深的网络);其次,对于某些类型的卷积网络。在后一种情况下,我们研究样品复杂性如何受到参数的影响,例如斑块之间的重叠量和斑块的总数。
translated by 谷歌翻译
在本文中,我们为Rademacher复杂性和I.I.D.深度学习的概括误差开发了一些新颖的界限。和马尔可夫数据集。新的Rademacher复杂性和概括范围紧密至$ O(1/\ sqrt {n})$,其中$ n $是训练集的大小。对于某些神经网络结构,它们可能会在深度$ l $中呈指数衰减。塔格兰(Talagrand)在功能空间和深层神经网络之间进行高维映射的收缩引理的开发是对这项工作的关键技术贡献。
translated by 谷歌翻译
We investigate the capacity, convexity and characterization of a general family of normconstrained feed-forward networks.
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
最近的一项工作已经通过神经切线核(NTK)分析了深神经网络的理论特性。特别是,NTK的最小特征值与记忆能力,梯度下降算法的全球收敛性和深网的概括有关。但是,现有结果要么在两层设置中提供边界,要么假设对于多层网络,将NTK矩阵的频谱从0界限为界限。在本文中,我们在无限宽度和有限宽度的限制情况下,在最小的ntk矩阵的最小特征值上提供了紧密的界限。在有限宽度的设置中,我们认为的网络体系结构相当笼统:我们需要大致订购$ n $神经元的宽层,$ n $是数据示例的数量;剩余层宽度的缩放是任意的(取决于对数因素)。为了获得我们的结果,我们分析了各种量的独立兴趣:我们对隐藏特征矩阵的最小奇异值以及输入输出特征图的Lipschitz常数上的上限给出了下限。
translated by 谷歌翻译
古典统计学习理论表示,拟合太多参数导致过度舒服和性能差。尽管大量参数矛盾,但是现代深度神经网络概括了这一发现,并构成了解释深度学习成功的主要未解决的问题。随机梯度下降(SGD)引起的隐式正规被认为是重要的,但其特定原则仍然是未知的。在这项工作中,我们研究了当地最小值周围的能量景观的局部几何学如何影响SGD的统计特性,具有高斯梯度噪声。我们争辩说,在合理的假设下,局部几何形状力强制SGD保持接近低维子空间,这会引起隐式正则化并导致深神经网络的泛化误差界定更严格的界限。为了获得神经网络的泛化误差界限,我们首先引入局部最小值周围的停滞迹象,并施加人口风险的局部基本凸性财产。在这些条件下,推导出SGD的下界,以保留在这些停滞套件中。如果发生停滞,我们会导出涉及权重矩阵的光谱规范的深神经网络的泛化误差的界限,但不是网络参数的数量。从技术上讲,我们的证据基于控制SGD中的参数值的变化以及基于局部最小值周围的合适邻域的熵迭代的参数值和局部均匀收敛。我们的工作试图通过统一收敛更好地连接非凸优化和泛化分析。
translated by 谷歌翻译
神经切线内核(NTK)已成为提供记忆,优化和泛化的强大工具,可保证深度神经网络。一项工作已经研究了NTK频谱的两层和深网,其中至少具有$ \ omega(n)$神经元的层,$ n $是培训样本的数量。此外,有越来越多的证据表明,只要参数数量超过样品数量,具有亚线性层宽度的深网是强大的记忆和优化器。因此,一个自然的开放问题是NTK是否在如此充满挑战的子线性设置中适应得很好。在本文中,我们以肯定的方式回答了这个问题。我们的主要技术贡献是对最小的深网的最小NTK特征值的下限,最小可能的过度参数化:参数的数量大约为$ \ omega(n)$,因此,神经元的数量仅为$ $ $ \ omega(\ sqrt {n})$。为了展示我们的NTK界限的适用性,我们为梯度下降训练提供了两个有关记忆能力和优化保证的结果。
translated by 谷歌翻译
Deep nets generalize well despite having more parameters than the number of training samples. Recent works try to give an explanation using PAC-Bayes and Margin-based analyses, but do not as yet result in sample complexity bounds better than naive parameter counting. The current paper shows generalization bounds that're orders of magnitude better in practice. These rely upon new succinct reparametrizations of the trained net -a compression that is explicit and efficient. These yield generalization bounds via a simple compression-based framework introduced here. Our results also provide some theoretical justification for widespread empirical success in compressing deep nets.Analysis of correctness of our compression relies upon some newly identified "noise stability"properties of trained deep nets, which are also experimentally verified. The study of these properties and resulting generalization bounds are also extended to convolutional nets, which had eluded earlier attempts on proving generalization.
translated by 谷歌翻译
This work studies training one-hidden-layer overparameterized ReLU networks via gradient descent in the neural tangent kernel (NTK) regime, where, differently from the previous works, the networks' biases are trainable and are initialized to some constant rather than zero. The first set of results of this work characterize the convergence of the network's gradient descent dynamics. Surprisingly, it is shown that the network after sparsification can achieve as fast convergence as the original network. The contribution over previous work is that not only the bias is allowed to be updated by gradient descent under our setting but also a finer analysis is given such that the required width to ensure the network's closeness to its NTK is improved. Secondly, the networks' generalization bound after training is provided. A width-sparsity dependence is presented which yields sparsity-dependent localized Rademacher complexity and a generalization bound matching previous analysis (up to logarithmic factors). As a by-product, if the bias initialization is chosen to be zero, the width requirement improves the previous bound for the shallow networks' generalization. Lastly, since the generalization bound has dependence on the smallest eigenvalue of the limiting NTK and the bounds from previous works yield vacuous generalization, this work further studies the least eigenvalue of the limiting NTK. Surprisingly, while it is not shown that trainable biases are necessary, trainable bias helps to identify a nice data-dependent region where a much finer analysis of the NTK's smallest eigenvalue can be conducted, which leads to a much sharper lower bound than the previously known worst-case bound and, consequently, a non-vacuous generalization bound.
translated by 谷歌翻译
复合值的神经网络(CVNNS)已广泛应用于各种领域,尤其是信号处理和图像识别。然而,很少有作品关注CVNN的泛化,尽管它至关重要,以确保CVNNS在看不见的数据上的性能至关重要。本文是第一项工作,证明了复杂的神经网络的泛化。束缚尺度具有光谱复杂性,其主导因子是重量矩阵的光谱范数产物。此外,我们的工作为训练数据顺序时为CVNN提供了泛化,这也受光谱复杂度的影响。从理论上讲,这些界限通过Maey Sparsification Lemma和Dudley熵整体来源。经验上,我们通过在不同的数据集上培训复杂的卷积神经网络进行实验:Mnist,FashionMnist,CiFar-10,CiFar-100,微小想象成和IMDB。 Spearman的秩序相关系数和这些数据集上的相应P值给出了由权重矩阵光谱规范产品测量的网络的光谱复杂度,与概括能力有统计学显着的相关性。
translated by 谷歌翻译
由学习的迭代软阈值算法(Lista)的动机,我们介绍了一种适用于稀疏重建的一般性网络,从少数线性测量。通过在层之间允许各种重量共享度,我们为非常不同的神经网络类型提供统一分析,从复发到网络更类似于标准前馈神经网络。基于训练样本,通过经验风险最小化,我们旨在学习最佳网络参数,从而实现从其低维线性测量的最佳网络。我们通过分析由这种深网络组成的假设类的RadeMacher复杂性来衍生泛化界限,这也考虑了阈值参数。我们获得了对样本复杂性的估计,基本上只取决于参数和深度的数量。我们应用主要结果以获得几个实际示例的特定泛化界限,包括(隐式)字典学习和卷积神经网络的不同算法。
translated by 谷歌翻译
经常性神经网络(RNN)是深度学习的基本结构。最近,一些作品研究了过度参数化神经网络的培训过程,并显示过度参数化网络可以在一些显着的概念类别中学习功能,其中包含可提供的概括误差。在本文中,我们分析了随机初始化的RNN的培训和泛化,并提供了对近期工作的以下改进:1)对于输入序列的RNN $ x =(x_1,x_2,...,x_l)$,以前作品学习,学习函数,这些功能是$ f(\ beta ^ t_lx_l_l_l)$的函数,并且需要$ || x_l || \ leq \ epsilon $的归一化条件,具体取决于$ f $的复杂性。在本文中,使用关于神经切线内核矩阵的详细分析,我们证明了概括的概括误差,而无需规范化条件,并且显示一些值得注意的概念类是以迭代的数量学习,并在输入中缩放几乎 - 多项式的样本长度$ l $。 2)此外,我们证明了一种新的结果来学习输入序列的N变量功能,具有FOR $ f(\ beta ^ t [x_ {l_1},...,x_ {l_n})$,它不属于到“添加剂”概念类,我,e。,函数的总和$ f(x_l)$。我们展示了当$ n $或$ l_0 = \ max(l_1,..,l_n) - \ min(l_1,l_n)$小,$ f(\ beta ^ t [x_ {l_1} ,...,x_ {l_n}])$将以数字迭代和样本在输入长度$ l $上的数量迭代和样本缩放。
translated by 谷歌翻译
We investigate the sample complexity of bounded two-layer neural networks using different activation functions. In particular, we consider the class \[ \mathcal{H} = \left\{\textbf{x}\mapsto \langle \textbf{v}, \sigma \circ W\textbf{x} + \textbf{b} \rangle : \textbf{b}\in\mathbb{R}^d, W \in \mathbb{R}^{T\times d}, \textbf{v} \in \mathbb{R}^{T}\right\} \] where the spectral norm of $W$ and $\textbf{v}$ is bounded by $O(1)$, the Frobenius norm of $W$ is bounded from its initialization by $R > 0$, and $\sigma$ is a Lipschitz activation function. We prove that if $\sigma$ is element-wise, then the sample complexity of $\mathcal{H}$ is width independent and that this complexity is tight. Moreover, we show that the element-wise property of $\sigma$ is essential for width-independent bound, in the sense that there exist non-element-wise activation functions whose sample complexity is provably width-dependent. For the upper bound, we use the recent approach for norm-based bounds named Approximate Description Length (ADL) by arXiv:1910.05697. We further develop new techniques and tools for this approach, that will hopefully inspire future works.
translated by 谷歌翻译
我们在随机特征矩阵的条件数上提供(高概率)界限。特别是,我们表明,如果复杂性比率$ \ frac {n} $ where $ n $是n $ with n $ wore $ n $是$ m $的数量,如$ \ log ^ {-1}( n)$或$ \ log(m)$,然后随机功能矩阵很好。该结果在没有正则化的情况下保持并且依赖于在随机特征矩阵的相关组件之间建立各种浓度界限。另外,我们在随机特征矩阵的受限等距常数上获得界限。我们证明了使用随机特征矩阵的回归问题相关的风险表现出双重下降现象,并且这是条件数的双缩小行为的效果。风险范围包括使用最小二乘问题的underParamedAimed设置和使用最小规范插值问题或稀疏回归问题的过次参数化设置。对于最小二乘或稀疏的回归案例,我们表明风险降低为$ M $和$ N $增加,即使在存在有限或随机噪声时也是如此。风险绑定与文献中的最佳缩放匹配,我们的结果中的常量是显式的,并且独立于数据的维度。
translated by 谷歌翻译
在本文中,我们研究了学习最适合培训数据集的浅层人工神经网络的问题。我们在过度参数化的制度中研究了这个问题,在该制度中,观测值的数量少于模型中的参数数量。我们表明,通过二次激活,训练的优化景观这种浅神经网络具有某些有利的特征,可以使用各种局部搜索启发式方法有效地找到全球最佳模型。该结果适用于输入/输出对的任意培训数据。对于可区分的激活函数,我们还表明,适当初始化的梯度下降以线性速率收敛到全球最佳模型。该结果着重于选择输入的可实现模型。根据高斯分布和标签是根据种植的重量系数生成的。
translated by 谷歌翻译
多层馈电网络已用于近似广泛的非线性函数。一个重要且基本的问题是通过其统计风险或未来数据的预期预测错误来了解网络模型的可学习性。据我们所知,现有作品所显示的神经网络的收敛速率最多受$ n^{ - 1/4} $的顺序,样本大小为$ n $。在本文中,我们表明,具有任意宽度的一类变异受限的神经网络可以实现接近参数的$ n^{ - 1/2+\ delta} $,用于任意的正常常数$ \ delta $。在平方误差下,它等效于$ n^{ - 1 +2 \ delta} $。数值实验也可以观察到这个速率。结果表明,近似平滑功能所需的神经功能空间可能不如通常感知的那样大。我们的结果还提供了对当神经元和学习参数的数量和学习参数迅速增长,甚至超过$ n $时,深层神经网络并不容易遭受过度匹配的现象。我们还讨论了有关其他网络参数的收敛速率,包括输入维度,网络层和系数规范。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
Consider the multivariate nonparametric regression model. It is shown that estimators based on sparsely connected deep neural networks with ReLU activation function and properly chosen network architecture achieve the minimax rates of convergence (up to log nfactors) under a general composition assumption on the regression function. The framework includes many well-studied structural constraints such as (generalized) additive models. While there is a lot of flexibility in the network architecture, the tuning parameter is the sparsity of the network. Specifically, we consider large networks with number of potential network parameters exceeding the sample size. The analysis gives some insights into why multilayer feedforward neural networks perform well in practice. Interestingly, for ReLU activation function the depth (number of layers) of the neural network architectures plays an important role and our theory suggests that for nonparametric regression, scaling the network depth with the sample size is natural. It is also shown that under the composition assumption wavelet estimators can only achieve suboptimal rates.
translated by 谷歌翻译
本文以非线性功能近似研究基于模型的匪徒和增强学​​习(RL)。我们建议研究与近似局部最大值的收敛性,因为我们表明,即使对于具有确定性奖励的一层神经网络匪徒,全球收敛在统计上也很棘手。对于非线性匪徒和RL,本文介绍了一种基于模型的算法,即具有在线模型学习者(小提琴)的虚拟攀登,该算法可证明其收敛到局部最大值,其样品复杂性仅取决于模型类的顺序Rademacher复杂性。我们的结果意味着在几种具体设置(例如有限或稀疏模型类别的线性匪徒)和两层神经净匪内的新型全球或本地遗憾界限。一个关键的算法洞察力是,即使对于两层神经净模型类别,乐观也可能导致过度探索。另一方面,为了收敛到本地最大值,如果模型还可以合理地预测真实返回的梯度和Hessian的大小,则足以最大化虚拟返回。
translated by 谷歌翻译