多层馈电网络已用于近似广泛的非线性函数。一个重要且基本的问题是通过其统计风险或未来数据的预期预测错误来了解网络模型的可学习性。据我们所知,现有作品所显示的神经网络的收敛速率最多受$ n^{ - 1/4} $的顺序,样本大小为$ n $。在本文中,我们表明,具有任意宽度的一类变异受限的神经网络可以实现接近参数的$ n^{ - 1/2+\ delta} $,用于任意的正常常数$ \ delta $。在平方误差下,它等效于$ n^{ - 1 +2 \ delta} $。数值实验也可以观察到这个速率。结果表明,近似平滑功能所需的神经功能空间可能不如通常感知的那样大。我们的结果还提供了对当神经元和学习参数的数量和学习参数迅速增长,甚至超过$ n $时,深层神经网络并不容易遭受过度匹配的现象。我们还讨论了有关其他网络参数的收敛速率,包括输入维度,网络层和系数规范。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
Consider the multivariate nonparametric regression model. It is shown that estimators based on sparsely connected deep neural networks with ReLU activation function and properly chosen network architecture achieve the minimax rates of convergence (up to log nfactors) under a general composition assumption on the regression function. The framework includes many well-studied structural constraints such as (generalized) additive models. While there is a lot of flexibility in the network architecture, the tuning parameter is the sparsity of the network. Specifically, we consider large networks with number of potential network parameters exceeding the sample size. The analysis gives some insights into why multilayer feedforward neural networks perform well in practice. Interestingly, for ReLU activation function the depth (number of layers) of the neural network architectures plays an important role and our theory suggests that for nonparametric regression, scaling the network depth with the sample size is natural. It is also shown that under the composition assumption wavelet estimators can only achieve suboptimal rates.
translated by 谷歌翻译
本文研究了在潜在的结果框架中使用深神经网络(DNN)的平均治疗效果(ATE)的估计和推理。在一些规则性条件下,观察到的响应可以作为与混杂变量和治疗指标作为自变量的平均回归问题的响应。使用这种配方,我们研究了通过使用特定网络架构的DNN回归基于估计平均回归函数的两种尝试估计和推断方法。我们表明ATE的两个DNN估计在底层真正的均值回归模型上的一些假设下与无维一致性率一致。我们的模型假设可容纳观察到的协变量的潜在复杂的依赖结构,包括治疗指标和混淆变量之间的潜在因子和非线性相互作用。我们还基于采样分裂的思想,确保精确推理和不确定量化,建立了我们估计的渐近常态。仿真研究和实际数据应用证明了我们的理论调查结果,支持我们的DNN估计和推理方法。
translated by 谷歌翻译
我们在使用函数近似的情况下,在使用最小的Minimax方法估算这些功能时,使用功能近似来实现函数近似和$ q $ functions的理论表征。在各种可靠性和完整性假设的组合下,我们表明Minimax方法使我们能够实现重量和质量功能的快速收敛速度,其特征在于关键的不平等\ citep {bartlett2005}。基于此结果,我们分析了OPE的收敛速率。特别是,我们引入了新型的替代完整性条件,在该条件下,OPE是可行的,我们在非尾部环境中以一阶效率提出了第一个有限样本结果,即在领先期限中具有最小的系数。
translated by 谷歌翻译
无限尺寸空间之间的学习运营商是机器学习,成像科学,数学建模和仿真等广泛应用中出现的重要学习任务。本文研究了利用深神经网络的Lipschitz运营商的非参数估计。 Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class.在假设目标操作员表现出低维结构的情况下,由于训练样本大小增加,我们的误差界限衰减,根据我们估计中的内在尺寸,具有吸引力的快速速度。我们的假设涵盖了实际应用中的大多数情况,我们的结果通过利用操作员估算中的低维结构来产生快速速率。我们还研究了网络结构(例如,网络宽度,深度和稀疏性)对神经网络估计器的泛化误差的影响,并提出了对网络结构的选择来定量地最大化学习效率的一般建议。
translated by 谷歌翻译
在本文中,我们研究了使用深丽升方法(DRM)和物理信息的神经网络(Pinns)从随机样品求解椭圆局部微分方程(PDE)的深度学习技术的统计限制。为了简化问题,我们专注于原型椭圆PDE:SCHR \“odinginger方程,具有零的Dirichlet边界条件,其在量子 - 机械系统中具有广泛的应用。我们为两种方法建立了上下界,通过快速速率泛化绑定并发地改善了这个问题的上限。我们发现当前的深ritz方法是次优的,提出修改版本。我们还证明了Pinn和DRM的修改版本可以实现Minimax SoboLev空间的最佳限制。经验上,近期工作表明,根据权力法,我们提供了培训训练的深层模型精度,我们提供了计算实验,以显示对深PDE求解器的尺寸依赖权力法的类似行为。
translated by 谷歌翻译
量化概率分布之间的异化的统计分歧(SDS)是统计推理和机器学习的基本组成部分。用于估计这些分歧的现代方法依赖于通过神经网络(NN)进行参数化经验变化形式并优化参数空间。这种神经估算器在实践中大量使用,但相应的性能保证是部分的,并呼吁进一步探索。特别是,涉及的两个错误源之间存在基本的权衡:近似和经验估计。虽然前者需要NN课程富有富有表现力,但后者依赖于控制复杂性。我们通过非渐近误差界限基于浅NN的基于浅NN的估计的估算权,重点关注四个流行的$ \ mathsf {f} $ - 分离 - kullback-leibler,chi squared,squared hellinger,以及总变异。我们分析依赖于实证过程理论的非渐近功能近似定理和工具。界限揭示了NN尺寸和样品数量之间的张力,并使能够表征其缩放速率,以确保一致性。对于紧凑型支持的分布,我们进一步表明,上述上三次分歧的神经估算器以适当的NN生长速率接近Minimax率 - 最佳,实现了对数因子的参数速率。
translated by 谷歌翻译
当回归函数属于标准的平滑类时,由衍生物的单变量函数组成,衍生物到达$(\ gamma + 1)$ th由Action Anclople或Ae界定的常见常数,众所周知,最小的收敛速率均值平均错误(MSE)是$ \左(\ FRAC {\ SIGMA ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} {2 \ gamma + 3}} $ \伽玛$是有限的,样本尺寸$ n \ lightarrow \ idty $。从一个不可思议的观点来看,考虑有限$ N $,本文显示:对于旧的H \“较旧的和SoboLev类,最低限度最佳速率是$ \ frac {\ sigma ^ {2} \ left(\ gamma \ vee1 \右)$ \ frac {n} {\ sigma ^ {2}} \ precsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $和$ \ left(\ frac {\ sigma ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} $ \ r \ frac {n} {\ sigma ^ {2}}} \ succsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $。为了建立这些结果,我们在覆盖和覆盖号码上获得上下界限,以获得$ k的广义H \“较旧的班级$ th($ k = 0,...,\ gamma $)衍生物由上面的参数$ r_ {k} $和$ \ gamma $ th衍生物是$ r _ {\ gamma + 1} - $ lipschitz (以及广义椭圆形的平滑功能)。我们的界限锐化了标准类的古典度量熵结果,并赋予$ \ gamma $和$ r_ {k} $的一般依赖。通过在$ r_ {k} = 1 $以下派生MIMIMAX最佳MSE率,$ r_ {k} \ LEQ \ left(k-1 \右)!$和$ r_ {k} = k!$(与后两个在我们的介绍中有动机的情况)在我们的新熵界的帮助下,我们展示了一些有趣的结果,无法在文献中的现有熵界显示。对于H \“较旧的$ D-$变化函数,我们的结果表明,归一渐近率$ \左(\ frac {\ sigma ^ {2}} {n}右)^ {\ frac {2 \ Gamma + 2} {2 \ Gamma + 2 + D}} $可能是有限样本中的MSE低估。
translated by 谷歌翻译
古典统计学习理论表示,拟合太多参数导致过度舒服和性能差。尽管大量参数矛盾,但是现代深度神经网络概括了这一发现,并构成了解释深度学习成功的主要未解决的问题。随机梯度下降(SGD)引起的隐式正规被认为是重要的,但其特定原则仍然是未知的。在这项工作中,我们研究了当地最小值周围的能量景观的局部几何学如何影响SGD的统计特性,具有高斯梯度噪声。我们争辩说,在合理的假设下,局部几何形状力强制SGD保持接近低维子空间,这会引起隐式正则化并导致深神经网络的泛化误差界定更严格的界限。为了获得神经网络的泛化误差界限,我们首先引入局部最小值周围的停滞迹象,并施加人口风险的局部基本凸性财产。在这些条件下,推导出SGD的下界,以保留在这些停滞套件中。如果发生停滞,我们会导出涉及权重矩阵的光谱规范的深神经网络的泛化误差的界限,但不是网络参数的数量。从技术上讲,我们的证据基于控制SGD中的参数值的变化以及基于局部最小值周围的合适邻域的熵迭代的参数值和局部均匀收敛。我们的工作试图通过统一收敛更好地连接非凸优化和泛化分析。
translated by 谷歌翻译
生成的对抗网络(GAN)在无监督学习方面取得了巨大的成功。尽管具有显着的经验表现,但关于gan的统计特性的理论研究有限。本文提供了gan的近似值和统计保证,以估算具有H \“ {o} lder空间密度的数据分布。我们的主要结果表明,如果正确选择了生成器和鉴别器网络架构,则gan是一致的估计器在较强的差异指标下的数据分布(例如Wasserstein-1距离。 ,这不受环境维度的诅咒。我们对低维数据的分析基于具有Lipschitz连续性保证的神经网络的通用近似理论,这可能具有独立的兴趣。
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
我们在决策边界是一定规律的假设下,研究从无噪声训练样本的学习分类功能的问题。我们为这一估计问题建立了普遍的下限,对于连续决策边界的一般阶级。对于本地禁区的类别,我们发现最佳估计率基本上独立于底层维度,并且可以通过在适当类的深神经网络上通过经验风险最小化方法实现。这些结果基于$ l ^ 1 $和$ l ^ \ infty $ intty $ inthty $ off的禁区常规职能的新颖估计数。
translated by 谷歌翻译
我们提出了一种惩罚的非参数方法,以使用整流器二次单元(REEND)激活了深层神经网络,以估计不可分割的模型中的分位数回归过程(QRP),并引入了新的惩罚函数,以实施对瓦解回归曲线的非交叉。我们为估计的QRP建立了非反应过量的风险界限,并在轻度平滑度和规律性条件下得出估计的QRP的平均综合平方误差。为了建立这些非反应风险和估计误差范围,我们还使用$ s> 0 $及其衍生物及其衍生物使用所需的激活的神经网络开发了一个新的错误,用于近似$ c^s $平滑功能。这是必需网络的新近似结果,并且具有独立的兴趣,并且可能在其他问题中有用。我们的数值实验表明,所提出的方法具有竞争性或胜过两种现有方法,包括使用再现核和随机森林的方法,用于非参数分位数回归。
translated by 谷歌翻译
我们研究神经网络的基于规范的统一收敛范围,旨在密切理解它们如何受到规范约束的架构和类型的影响,对于简单的标量价值一类隐藏的一层网络,并在其中界定了输入。欧几里得规范。我们首先证明,通常,控制隐藏层重量矩阵的光谱规范不足以获得均匀的收敛保证(与网络宽度无关),而更强的Frobenius Norm Control是足够的,扩展并改善了以前的工作。在证明构造中,我们识别和分析了两个重要的设置,在这些设置中(可能令人惊讶)仅光谱规范控制就足够了:首先,当网络的激活函数足够平滑时(结果扩展到更深的网络);其次,对于某些类型的卷积网络。在后一种情况下,我们研究样品复杂性如何受到参数的影响,例如斑块之间的重叠量和斑块的总数。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
我们考虑使用修改后的Relu神经网络进行回归估计,其中首先通过函数$ \ alpha $修改网络权重矩阵,然后再乘以输入向量。我们举例说明连续的,分段线性函数$ \ alpha $为此,以$ l_1 $和Squared $ l_2 $惩罚的经验风险最小化符合经验的风险最小化,最多可进行预测率未知的$ \ beta $ -smooth函数。
translated by 谷歌翻译
当并非观察到所有混杂因子并获得负面对照时,我们研究因果参数的估计。最近的工作表明,这些方法如何通过两个所谓的桥梁函数来实现识别和有效估计。在本文中,我们使用阴性对照来应对因果推断的主要挑战:这些桥梁功能的识别和估计。先前的工作依赖于这些功能的完整性条件,以识别因果参数并在估计中需要进行独特性假设,并且还集中于桥梁函数的参数估计。相反,我们提供了一种新的识别策略,以避免完整性条件。而且,我们根据最小学习公式为这些功能提供新的估计量。这些估计值适合通用功能类别,例如重现Hilbert空间和神经网络。我们研究了有限样本收敛的结果,既可以估计桥梁功能本身,又要在各种假设组合下对因果参数进行最终估计。我们尽可能避免桥梁上的独特条件。
translated by 谷歌翻译
最近的作品证明了过度参数化学习中的双重下降现象:随着模型参数的数量的增加,多余的风险具有$ \ mathsf {u} $ - 在开始时形状,然后在模型高度过度参数化时再次减少。尽管最近在不同的环境(例如线性模型,随机特征模型和内核方法)下进行了研究,但在理论上尚未完全理解这种现象。在本文中,我们考虑了由两种随机特征组成的双随机特征模型(DRFM),并研究DRFM在脊回归中实现的多余风险。我们计算高维框架下的多余风险的确切限制,在这种框架上,训练样本量,数据尺寸和随机特征的维度往往会成比例地无限。根据计算,我们证明DRFM的风险曲线可以表现出三重下降。然后,我们提供三重下降现象的解释,并讨论随机特征维度,正则化参数和信噪比比率如何控制DRFMS风险曲线的形状。最后,我们将研究扩展到多个随机功能模型(MRFM),并表明具有$ K $类型的随机功能的MRFM可能会显示出$(K+1)$ - 折叠。我们的分析指出,具有特定数量下降的风险曲线通常在基于特征的回归中存在。另一个有趣的发现是,当学习神经网络在“神经切线内核”制度中时,我们的结果可以恢复文献中报告的风险峰值位置。
translated by 谷歌翻译
我们开发了对对抗估计量(“ A-估计器”)的渐近理论。它们将最大样品型估计量(“ M-估计器”)推广为平均目标,以通过某些参数最大化,而其他参数则最小化。该课程涵盖了瞬间的瞬间通用方法,生成的对抗网络以及机器学习和计量经济学方面的最新建议。在这些示例中,研究人员指出,原则上可以使用哪些方面进行估计,并且对手学习如何最佳地强调它们。我们在重点和部分识别下得出A估计剂的收敛速率,以及其参数功能的正态性。未知功能可以通过筛子(例如深神经网络)近似,我们为此提供简化的低级条件。作为推论,我们获得了神经网络估计剂的正态性,克服了文献先前确定的技术问题。我们的理论产生了有关各种A估计器的新成果,为它们在最近的应用中的成功提供了直觉和正式的理由。
translated by 谷歌翻译