如今,贝叶斯推论的应用非常流行。在此框架中,通过其边际可能性或其商(称为贝叶斯因素)进行比较模型。但是,边际可能性取决于先前的选择。对于模型选择,与参数估计问题不同,即使是分散的先验也可能非常有用。此外,当先验不当时,相应模型的边际可能性就不确定。在这项工作中,我们讨论了边际可能性及其在模型选择中的作用的先验敏感性问题。我们还评论了使用非信息性先验,这在实践中是非常普遍的选择。讨论了一些实际建议,并描述了文献中提出的许多可能的解决方案,以设计用于模型选择的客观先验。其中一些还允许使用不当先验。还提出了边际似然方法与众所周知的信息标准之间的联系。我们通过说明性的数值示例描述了主要问题和可能的解决方案,还提供了一些相关的代码。其中之一涉及外球星的现实应用。
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
我们基于电子价值开发假设检测理论,这是一种与p值不同的证据,允许毫不费力地结合来自常见场景中的几项研究的结果,其中决定执行新研究可能取决于以前的结果。基于E-V值的测试是安全的,即它们在此类可选的延续下保留I型错误保证。我们将增长速率最优性(GRO)定义为可选的连续上下文中的电力模拟,并且我们展示了如何构建GRO E-VARIABLE,以便为复合空缺和替代,强调模型的常规测试问题,并强调具有滋扰参数的模型。 GRO E值采取具有特殊前瞻的贝叶斯因子的形式。我们使用几种经典示例说明了该理论,包括一个样本安全T检验(其中右哈尔前方的右手前锋为GE)和2x2差价表(其中GRE之前与标准前沿不同)。分享渔业,奈曼和杰弗里斯·贝叶斯解释,电子价值观和相应的测试可以提供所有三所学校的追随者可接受的方法。
translated by 谷歌翻译
回归模型用于各种应用,为来自不同领域的研究人员提供强大的科学工具。线性或简单的参数,模型通常不足以描述输入变量与响应之间的复杂关系。通过诸如神经网络的灵活方法可以更好地描述这种关系,但这导致不太可解释的模型和潜在的过度装备。或者,可以使用特定的参数非线性函数,但是这种功能的规范通常是复杂的。在本文中,我们介绍了一种灵活的施工方法,高度灵活的非线性参数回归模型。非线性特征是分层的,类似于深度学习,但对要考虑的可能类型的功能具有额外的灵活性。这种灵活性,与变量选择相结合,使我们能够找到一小部分重要特征,从而可以更具可解释的模型。在可能的功能的空间内,考虑了贝叶斯方法,基于它们的复杂性引入功能的前沿。采用遗传修改模式跳跃马尔可夫链蒙特卡罗算法来执行贝叶斯推理和估计模型平均的后验概率。在各种应用中,我们说明了我们的方法如何用于获得有意义的非线性模型。此外,我们将其预测性能与多个机器学习算法进行比较。
translated by 谷歌翻译
我们开发用于测试两个或多个数据流是否来自同一源的电子变量,更普遍地说,源之间的差异是否大于某些最小效应大小。这些电子变量导致精确的非肌电测试,这些测试仍然是安全的,即在柔性采样场景(例如可选的停止和延续)下,保持其类型错误保证。在特殊情况下,我们的电子变量在替代方面也具有最佳的“增长”特性。虽然构造是通用的,但我们通过K x 2应急表的特殊情况进行了说明,我们还允许在复合替代方案上纳入不同的限制。与模拟中的p值分析和现实世界中的p值分析进行比较,表明电子变量通过其灵活性,通常允许早日停止数据收集,从而保留与经典方法相似的功率,同时还保留了扩展或结合的选项之后数据。
translated by 谷歌翻译
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.
translated by 谷歌翻译
假设我们观察一个随机向量$ x $从一个具有未知参数的已知家庭中的一些分发$ p $。我们问以下问题:什么时候可以将$ x $分为两部分$ f(x)$和$ g(x)$,使得两部分都足以重建$ x $自行,但两者都可以恢复$ x $完全,$(f(x),g(x))$的联合分布是贸易的吗?作为一个例子,如果$ x =(x_1,\ dots,x_n)$和$ p $是一个产品分布,那么对于任何$ m <n $,我们可以将样本拆分以定义$ f(x)=(x_1 ,\ dots,x_m)$和$ g(x)=(x_ {m + 1},\ dots,x_n)$。 Rasines和Young(2021)提供了通过使用$ x $的随机化实现此任务的替代路线,并通过加性高斯噪声来实现高斯分布数据的有限样本中的选择后推断和非高斯添加剂模型的渐近。在本文中,我们提供更一般的方法,可以通过借助贝叶斯推断的思路在有限样本中实现这种分裂,以产生(频繁的)解决方案,该解决方案可以被视为数据分裂的连续模拟。我们称我们的方法数据模糊,作为数据分割,数据雕刻和P值屏蔽的替代方案。我们举例说明了一些原型应用程序的方法,例如选择趋势过滤和其他回归问题的选择后推断。
translated by 谷歌翻译
无似然方法是对可以模拟的隐式模型执行推断的必不可少的工具,但相应的可能性是棘手的。但是,常见的无可能方法不能很好地扩展到大量模型参数。一种有前途的无可能推理的有前途的方法涉及通过仅根据据信为低维成分提供信息的摘要统计数据来估计低维边缘后期,然后在某种程度上结合了低维近似值。在本文中,我们证明,对于看似直观的汇总统计选择,这种低维近似值在实践中可能是差的。我们描述了一个理想化的低维汇总统计量,原则上适用于边际估计。但是,在实践中很难直接近似理想的选择。因此,我们提出了一种替代的边际估计方法,该方法更容易实施和自动化。考虑到初始选择的低维摘要统计量可能仅对边缘后验位置有用,新方法通过使用所有摘要统计数据来确保全局可识别性来提高性能,从而提高性能使用低维摘要统计量进行精确的低维近似。我们表明,该方法的后部可以分别基于低维和完整的摘要统计数据将其表示为后验分布的对数库。在几个示例中说明了我们方法的良好性能。
translated by 谷歌翻译
We consider the problem of estimating the interacting neighborhood of a Markov Random Field model with finite support and homogeneous pairwise interactions based on relative positions of a two-dimensional lattice. Using a Bayesian framework, we propose a Reversible Jump Monte Carlo Markov Chain algorithm that jumps across subsets of a maximal range neighborhood, allowing us to perform model selection based on a marginal pseudoposterior distribution of models. To show the strength of our proposed methodology we perform a simulation study and apply it to a real dataset from a discrete texture image analysis.
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
剩下的交叉验证(LOO-CV)是一种估计样本外预测准确性的流行方法。但是,由于需要多次拟合模型,因此计算LOO-CV标准在计算上可能很昂贵。在贝叶斯的情况下,重要性采样提供了一种可能的解决方案,但是经典方法可以轻松地产生差异是无限的估计器,从而使它们可能不可靠。在这里,我们提出和分析一种新型混合估计量来计算贝叶斯Loo-CV标准。我们的方法保留了经典方法的简单性和计算便利性,同时保证了所得估计器的有限差异。提供了理论和数值结果,以说明提高的鲁棒性和效率。在高维问题中,计算益处尤为重要,可以为更广泛的模型执行贝叶斯loo-CV。所提出的方法可以在标准概率编程软件中很容易实现,并且计算成本大致相当于拟合原始模型一次。
translated by 谷歌翻译
我们介绍了强大的子组发现的问题,即,找到一个关于一个或多个目标属性的脱颖而出的子集的一组可解释的描述,2)是统计上的鲁棒,并且3)非冗余。许多尝试已经挖掘了局部强壮的子组或解决模式爆炸,但我们是第一个从全球建模角度同时解决这两个挑战的爆炸。首先,我们制定广泛的模型类别的子组列表,即订购的子组,可以组成的单次组和多变量目标,该目标可以由标称或数字变量组成,并且包括其定义中的传统Top-1子组发现。这种新颖的模型类允许我们使用最小描述长度(MDL)原理来形式地形化最佳强大的子组发现,在那里我们分别为标称和数字目标的最佳归一化最大可能性和贝叶斯编码而度假。其次,正如查找最佳子组列表都是NP-Hard,我们提出了SSD ++,一个贪婪的启发式,找到了很好的子组列表,并保证了根据MDL标准的最重要的子组在每次迭代中添加,这被显示为等同于贝叶斯一个样本比例,多项式或子组之间的多项式或T检验,以及数据集边际目标分布以及多假设检测罚款。我们经验上显示了54个数据集,即SSD ++优于先前的子组设置发现方法和子组列表大小。
translated by 谷歌翻译
不同的代理需要进行预测。他们观察到相同的数据,但有不同的模型:他们预测使用不同的解释变量。我们研究哪个代理商认为它们具有最佳的预测能力 - 通过最小的主观后均匀平均平方预测误差来衡量 - 并且显示它如何取决于样本大小。使用小样品,我们呈现结果表明它是使用低维模型的代理。对于大型样品,通常是具有高维模型的代理,可能包括无关的变量,但从未排除相关的变量。我们将结果应用于拍卖生产资产拍卖中的获胜模型,以争辩于企业家和具有简单模型的投资者将在新部门过度代表,并了解解释横断面变异的“因素”的扩散资产定价文学中的预期股票回报。
translated by 谷歌翻译
群集分析需要许多决定:聚类方法和隐含的参考模型,群集数,通常,几个超参数和算法调整。在实践中,一个分区产生多个分区,基于验证或选择标准选择最终的分区。存在丰富的验证方法,即隐式或明确地假设某个聚类概念。此外,它们通常仅限于从特定方法获得的分区上操作。在本文中,我们专注于可以通过二次或线性边界分开的群体。参考集群概念通过二次判别符号函数和描述集群大小,中心和分散的参数定义。我们开发了两个名为二次分数的群集质量标准。我们表明这些标准与从一般类椭圆对称分布产生的组一致。对这种类型的组追求在应用程序中是常见的。研究了与混合模型和模型的聚类的似然理论的连接。基于Bootstrap重新采样的二次分数,我们提出了一个选择规则,允许在许多聚类解决方案中选择。所提出的方法具有独特的优点,即它可以比较不能与其他最先进的方法进行比较的分区。广泛的数值实验和实际数据的分析表明,即使某些竞争方法在某些设置中出现优越,所提出的方法也实现了更好的整体性能。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
G-Enum histograms are a new fast and fully automated method for irregular histogram construction. By framing histogram construction as a density estimation problem and its automation as a model selection task, these histograms leverage the Minimum Description Length principle (MDL) to derive two different model selection criteria. Several proven theoretical results about these criteria give insights about their asymptotic behavior and are used to speed up their optimisation. These insights, combined to a greedy search heuristic, are used to construct histograms in linearithmic time rather than the polynomial time incurred by previous works. The capabilities of the proposed MDL density estimation method are illustrated with reference to other fully automated methods in the literature, both on synthetic and large real-world data sets.
translated by 谷歌翻译
Markov链条具有可变长度是有用的解析随机模型,能够产生最静止的离散符号序列。这个想法是识别过去的过去,称为上下文,与预测未来的符号相关。有时单个状态是一个背景,并查看过去并找到这种特定状态,使得进一步过去无关紧要。具有此类属性的状态称为续订状态,它们可用于将链拆分为独立和相同的分布式块。为了识别具有可变长度的链条的续订状态,我们提出了使用内在贝叶斯因子来评估某些特定状态是更新状态的假设。在这种情况下,难度在于将随机上下文树的边缘后端分布集成在上下文树上的一般前提分布,在过渡概率之前,蒙特卡罗方法被应用。为了展示我们方法的强度,我们分析了从不同二进制模型模型生成的人工数据集和来自语言学领域的一个示例。
translated by 谷歌翻译
社区检测是网络科学中最重要的方法领域之一,在过去的几十年里引起了大量关注的方法之一。该区域处理网络的自动部门到基础构建块中,目的是提供其大规模结构的概要。尽管它的重要性和广泛的采用普及,所谓的最先进和实际在各种领域实际使用的方法之间存在明显的差距。在这里,我们试图通过根据是否具有“描述性”或“推论”目标来划分现有方法来解决这种差异。虽然描述性方法在基于社区结构的直观概念的网络中找到模式的模式,但是推理方法阐述了精确的生成模型,并尝试将其符合数据。通过这种方式,他们能够为网络形成机制提供见解,并以统计证据支持的方式与随机性的单独结构。我们审查如何使用推论目标采用描述性方法被陷入困境和误导性答案,因此应该一般而言。我们认为推理方法更通常与更清晰的科学问题一致,产生更强大的结果,并且应该是一般的首选。我们试图消除一些神话和半真半假在实践中使用社区检测时,努力改善这些方法的使用以及对结果的解释。
translated by 谷歌翻译
贝叶斯网络是一种图形模型,用于编码感兴趣的变量之间的概率关系。当与统计技术结合使用时,图形模型对数据分析具有几个优点。一个,因为模型对所有变量中的依赖性进行编码,因此它易于处理缺少某些数据条目的情况。二,贝叶斯网络可以用于学习因果关系,因此可以用来获得关于问题域的理解并预测干预的后果。三,因为该模型具有因果和概率语义,因此是结合先前知识(通常出现因果形式)和数据的理想表示。四,贝叶斯网络与贝叶斯网络的统计方法提供了一种有效和原则的方法,可以避免数据过剩。在本文中,我们讨论了从先前知识构建贝叶斯网络的方法,总结了使用数据来改善这些模型的贝叶斯统计方法。关于后一项任务,我们描述了学习贝叶斯网络的参数和结构的方法,包括使用不完整数据学习的技术。此外,我们还联系了贝叶斯网络方法,以学习监督和无监督学习的技术。我们说明了使用真实案例研究的图形建模方法。
translated by 谷歌翻译