深度神经网络(DNN)众所周知,很容易受到对抗例子的影响(AES)。此外,AE具有对抗性可传递性,这意味着为源模型生成的AE可以以非平凡的概率欺骗另一个黑框模型(目标模型)。在本文中,我们首次研究了包括Convmixer在内的模型之间的对抗性转移性的属性。为了客观地验证可转让性的属性,使用称为AutoAttack的基准攻击方法评估模型的鲁棒性。在图像分类实验中,Convmixer被确认对对抗性转移性较弱。
translated by 谷歌翻译
深度神经网络(DNN)众所周知,很容易受到对抗例子的影响(AES)。此外,AE具有对抗性转移性,即为源模型傻瓜(目标)模型生成的AE。在本文中,我们首次研究了为对抗性强大防御的模型的可传递性。为了客观地验证可转让性的属性,使用称为AutoAttack的基准攻击方法评估模型的鲁棒性。在图像分类实验中,使用加密模型的使用不仅是对AE的鲁棒性,而且还可以减少AES在模型的可传递性方面的影响。
translated by 谷歌翻译
视觉变形金刚(VITS)处理将图像输入图像作为通过自我关注的斑块;比卷积神经网络(CNNS)彻底不同的结构。这使得研究Vit模型的对抗特征空间及其可转移性有趣。特别是,我们观察到通过常规逆势攻击发现的对抗性模式,即使对于大型Vit模型,也表现出非常低的黑箱可转移性。但是,我们表明这种现象仅是由于不利用VITS的真实表示潜力的次优攻击程序。深紫色由多个块组成,具有一致的架构,包括自我关注和前馈层,其中每个块能够独立地产生类令牌。仅使用最后一类令牌(传统方法)制定攻击并不直接利用存储在早期令牌中的辨别信息,从而导致VITS的逆势转移性差。使用Vit模型的组成性质,我们通过引入特定于Vit模型结构的两种新策略来增强现有攻击的可转移性。 (i)自我合奏:我们提出了一种通过将单vit模型解剖到网络的集合来找到多种判别途径的方法。这允许在每个VIT块处明确地利用特定于类信息。 (ii)令牌改进:我们建议改进令牌,以进一步增强每种Vit障碍的歧视能力。我们的令牌细化系统地将类令牌系统组合在补丁令牌中保留的结构信息。在一个视觉变压器中发现的分类器的集合中应用于此类精炼令牌时,对抗攻击具有明显更高的可转移性。
translated by 谷歌翻译
通过对数据集的样本应用小而有意的最差情况扰动可以产生对抗性输入,这导致甚至最先进的深神经网络,以高信任输出不正确的答案。因此,开发了一些对抗防御技术来提高模型的安全性和稳健性,并避免它们被攻击。逐渐,攻击者和捍卫者之间的游戏类似的竞争,其中两个玩家都会试图在最大化自己的收益的同时互相反对发挥最佳策略。为了解决游戏,每个玩家都基于对对手的战略选择的预测来选择反对对手的最佳策略。在这项工作中,我们正处于防守方面,以申请防止攻击的游戏理论方法。我们使用两个随机化方法,随机初始化和随机激活修剪,以创造网络的多样性。此外,我们使用一种去噪技术,超级分辨率,通过在攻击前预处理图像来改善模型的鲁棒性。我们的实验结果表明,这三种方法可以有效提高深度学习神经网络的鲁棒性。
translated by 谷歌翻译
视觉变压器(VIT)竞争替代卷积神经网络(CNN),以完成医学成像中的各种计算机视觉任务,例如分类和分割。尽管CNN对对抗攻击的脆弱性是一个众所周知的问题,但最近的作品表明,VIT也容易受到此类攻击的影响,并且在攻击下遭受了重大的绩效退化。 VIT易于精心设计的对抗样品的脆弱性引起了人们对它们在临床环境中的安全性的严重关注。在本文中,我们提出了一种新型的自我浓缩方法,以在存在对抗性攻击的情况下增强VIT的鲁棒性。拟议的自我启发变压器(SEVIT)利用了一个事实,即通过VIT的初始块学到的特征表示相对不受对抗性扰动的影响。根据这些中间特征表示,学习多个分类器,并将这些预测与最终VIT分类器的预测相结合可以为对抗性攻击提供鲁棒性。测量各种预测之间的一致性也可以帮助检测对抗样本。对两种方式(胸部X射线和基础镜检查)进行的实验证明了SEVIT体系结构在灰色框中防御各种对抗性攻击的功效(攻击者对目标模型有充分的了解,但没有防御机制)设置。代码:https://github.com/faresmalik/sevit
translated by 谷歌翻译
这项工作是对对使用Dino训练的自我监督视觉变压器的对抗性攻击的鲁棒性进行的首次分析。首先,我们评估通过自学学历的特征是否比受到监督学习中出现的人更强大。然后,我们介绍在潜在空间中攻击的属性。最后,我们评估了三种著名的防御策略是否可以通过微调分类头来提高下游任务中的对抗性鲁棒性,即使考虑到有限的计算资源,也可以提供鲁棒性。这些防御策略是:对抗性训练,合奏对抗训练和专业网络的合奏。
translated by 谷歌翻译
大多数对抗攻击防御方法依赖于混淆渐变。这些方法在捍卫基于梯度的攻击方面是成功的;然而,它们容易被攻击绕过,该攻击不使用梯度或近似近似和使用校正梯度的攻击。不存在不存在诸如对抗培训等梯度的防御,但这些方法通常对诸如其幅度的攻击进行假设。我们提出了一种分类模型,该模型不会混淆梯度,并且通过施工而强大而不承担任何关于攻击的知识。我们的方法将分类作为优化问题,我们“反转”在不受干扰的自然图像上培训的条件发电机,以找到生成最接近查询图像的类。我们假设潜在的脆性抗逆性攻击源是前馈分类器的高度低维性质,其允许对手发现输入空间中的小扰动,从而导致输出空间的大变化。另一方面,生成模型通常是低到高维的映射。虽然该方法与防御GaN相关,但在我们的模型中使用条件生成模型和反演而不是前馈分类是临界差异。与Defense-GaN不同,它被证明生成了容易规避的混淆渐变,我们表明我们的方法不会混淆梯度。我们展示了我们的模型对黑箱攻击的极其强劲,并与自然训练的前馈分类器相比,对白盒攻击的鲁棒性提高。
translated by 谷歌翻译
在本文中,我们提出了一种使用秘密钥匙的Convmixer模型的加密方法。已经研究了DNN模型的加密方法,以实现对抗性防御,模型保护和隐私图像分类。但是,与普通模型相比,常规加密方法的使用降低了模型的性能。因此,我们提出了一种加密交流模型的新方法。该方法是基于Convmixer拥有的嵌入体系结构进行的,并且使用该方法加密的模型才能具有与使用秘密键加密的测试图像时使用普通图像训练的模型相同的性能。此外,提出的方法不需要任何特殊准备的数据进行模型培训或网络修改。在实验中,在CIFAR10数据集中的图像分类任务中,根据分类精度和模型保护评估了所提出方法的有效性。
translated by 谷歌翻译
深度神经网络(DNNS)在各种方案中对对抗数据敏感,包括黑框方案,在该方案中,攻击者只允许查询训练有素的模型并接收输出。现有的黑框方法用于创建对抗性实例的方法是昂贵的,通常使用梯度估计或培训替换网络。本文介绍了\ textit {Attackar},这是一种基于分数的进化,黑框攻击。 Attackar是基于一个新的目标函数,可用于无梯度优化问题。攻击仅需要访问分类器的输出徽标,因此不受梯度掩蔽的影响。不需要其他信息,使我们的方法更适合现实生活中的情况。我们使用三个基准数据集(MNIST,CIFAR10和Imagenet)使用三种不同的最先进模型(Inception-V3,Resnet-50和VGG-16-BN)测试其性能。此外,我们评估了Attackar在非分辨率转换防御和最先进的强大模型上的性能。我们的结果表明,在准确性得分和查询效率方面,攻击性的表现出色。
translated by 谷歌翻译
作为反对攻击的最有效的防御方法之一,对抗性训练倾向于学习包容性的决策边界,以提高深度学习模型的鲁棒性。但是,由于沿对抗方向的边缘的大幅度和不必要的增加,对抗性训练会在自然实例和对抗性示例之间引起严重的交叉,这不利于平衡稳健性和自然准确性之间的权衡。在本文中,我们提出了一种新颖的对抗训练计划,以在稳健性和自然准确性之间进行更好的权衡。它旨在学习一个中度包容的决策边界,这意味着决策边界下的自然示例的边缘是中等的。我们称此方案为中等边缘的对抗训练(MMAT),该方案生成更细粒度的对抗示例以减轻交叉问题。我们还利用了经过良好培训的教师模型的逻辑来指导我们的模型学习。最后,MMAT在Black-Box和White-Box攻击下都可以实现高自然的精度和鲁棒性。例如,在SVHN上,实现了最新的鲁棒性和自然精度。
translated by 谷歌翻译
最近的视觉变压器(VIT)的进步已经证明了其在图像分类中的令人印象深刻的性能,这使其成为卷积神经网络(CNN)的有希望的替代品。与CNN不同,VIT表示作为图像斑块序列的输入图像。 PATCH-WISE输入图像表示提出了以下问题:与CNN相比,当各个输入图像贴片扰乱自然损坏或对抗性扰动时,如何进行VIT vit表现在这项工作中,我们研究了视觉变形金刚的稳健性,以修补扰动。令人惊讶的是,我们发现视觉变压器对自然腐蚀的斑块比CNN更腐蚀,而它们更容易受到对抗性补丁的影响。此外,我们进行广泛的定性和定量实验,以了解修补扰动的鲁棒性。我们透露,Vit对天然腐蚀斑块的更强烈的稳健性以及对抗对抗性斑块的更高脆弱性都是由注意机制引起的。具体而言,注意模型可以通过有效地忽略自然腐蚀斑块来帮助改善视觉变压器的稳健性。然而,当视力变压器被对手攻击时,注意机制可以很容易地愚弄更多地关注对抗扰动的斑块并导致错误。
translated by 谷歌翻译
Neural networks are vulnerable to adversarial examples, which poses a threat to their application in security sensitive systems. We propose high-level representation guided denoiser (HGD) as a defense for image classification. Standard denoiser suffers from the error amplification effect, in which small residual adversarial noise is progressively amplified and leads to wrong classifications. HGD overcomes this problem by using a loss function defined as the difference between the target model's outputs activated by the clean image and denoised image. Compared with ensemble adversarial training which is the state-of-the-art defending method on large images, HGD has three advantages. First, with HGD as a defense, the target model is more robust to either white-box or black-box adversarial attacks. Second, HGD can be trained on a small subset of the images and generalizes well to other images and unseen classes. Third, HGD can be transferred to defend models other than the one guiding it. In NIPS competition on defense against adversarial attacks, our HGD solution won the first place and outperformed other models by a large margin. 1 * Equal contribution.
translated by 谷歌翻译
随着对深神经网络(DNN)模型的越来越关注,对于此类模型,攻击也即将发生。例如,攻击者可以以特定方式仔细构建图像(也称为对抗性示例),以误导DNN模型以输出不正确的分类结果。同样,提出了许多努力来检测和减轻对抗性例子,通常是针对某些专门的攻击。在本文中,我们提出了一种基于数字水印的新型方法,以生成图像对抗性示例以愚弄DNN模型。具体而言,Watermark图像的部分主要特征几乎被视而不见地嵌入到主机图像中,旨在篡改和损坏DNN模型的识别能力。我们设计了一种有效的机制来选择主机图像和水印图像,并利用改进的离散小波变换(DWT)的拼布水印算法,并使用一组有效的超参数将数字水印从水印图像数据集嵌入到原始图像中,以生成图像对抗性示例。实验结果表明,对COFAR-10数据集的攻击成功率平均达到95.47%,最高为98.71%。此外,我们的方案能够有效地生成大量的对抗示例,具体地,平均完成了1.17秒,以完成CIFAR-10数据集上每个图像的攻击。此外,我们设计了一个基线实验,它使用高斯噪声作为水印图像数据集生成的水印图像,该数据集也显示了我们方案的有效性。同样,我们还提出了基于修改的离散余弦变换(DCT)的拼布水印算法。为了确保可重复性和可重复性,可以在GitHub上获得源代码。
translated by 谷歌翻译
在计算机视觉应用中广泛采用深度神经网络引起了对对抗性鲁棒性的重大兴趣。现有的研究表明,专门针对给定模型量身定制的恶意扰动输入(即,对抗性示例)可以成功地转移到另一个受过独立训练的模型中,以引起预测错误。此外,这种对抗性示例的属性归因于数据分布中的预测模式得出的特征。因此,我们有动力调查以下问题:对抗性防御,例如对抗性例子,可以成功地转移到其他受过独立训练的模型中?为此,我们提出了一种基于深度学习的预处理机制,我们将其称为可鲁棒的可转移功能提取器(RTFE)。在研究了理论动机和含义后,我们在实验上表明,我们的方法可以为多个独立训练的分类器提供对抗性的鲁棒性,这些分类器原本是对自适应白盒对手的无效性。此外,我们表明RTFE甚至可以为在不同数据集中独立训练的模型提供单发对手的鲁棒性。
translated by 谷歌翻译
视觉变压器(VITS)在一系列计算机视觉任务上表现出令人印象深刻的性能,但它们仍然遭受对抗的例子。 %以与CNN类似的方式制作。在本文中,我们对变压器的对抗攻击应特别适合其架构,共同考虑斑块和自我关注,以实现高可转移性。更具体地说,我们介绍了一种双攻击框架,其中包含不关注(PNA)攻击和果末攻击,以改善对抗不同风格的对抗性样本的可转移性。我们表明,在背部衰退期间跳过关注的梯度可以产生具有高可转换性的对抗性示例。此外,通过优化在每个迭代的随机采样的斑块的随机采样子集产生的对抗扰动,该次迭代的成功率比使用所有补丁的攻击实现了更高的攻击成功率。我们评估攻击最先进的VITS,CNN和强大的CNNS的可转移性。这些实验的结果表明,所提出的双重攻击可以大大提高VITS与VITS之间的转移性。此外,所提出的方法可以容易地与现有的传输方法组合以提高性能。代码可在https://github.com/zhipeng-wei/pna-patchout获得。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
在本文中,我们提出了转换图像和视觉变压器(VIT)模型的组合使用,该模型用秘密键转换。我们首次展示了经过普通图像训练的模型可以直接转换为根据VIT体系结构训练的模型,并且使用测试图像时,转换模型的性能与经过纯图像训练的模型相同用钥匙加密。此外,提出的方案不需要任何特殊准备的数据进行培训模型或网络修改,因此它还使我们可以轻松更新秘密密钥。在实验中,在CIFAR-10数据集中的图像分类任务中,根据性能降解和模型保护性能评估了提出方案的有效性。
translated by 谷歌翻译
虽然深度神经网络在各种任务中表现出前所未有的性能,但对对抗性示例的脆弱性阻碍了他们在安全关键系统中的部署。许多研究表明,即使在黑盒设置中也可能攻击,其中攻击者无法访问目标模型的内部信息。大多数黑匣子攻击基于查询,每个都可以获得目标模型的输入输出,并且许多研究侧重于减少所需查询的数量。在本文中,我们注意了目标模型的输出完全对应于查询输入的隐含假设。如果将某些随机性引入模型中,它可以打破假设,因此,基于查询的攻击可能在梯度估计和本地搜索中具有巨大的困难,这是其攻击过程的核心。从这种动机来看,我们甚至观察到一个小的添加剂输入噪声可以中和大多数基于查询的攻击和名称这个简单但有效的方法小噪声防御(SND)。我们分析了SND如何防御基于查询的黑匣子攻击,并展示其与CIFAR-10和ImageNet数据集的八种最先进的攻击有效性。即使具有强大的防御能力,SND几乎保持了原始的分类准确性和计算速度。通过在推断下仅添加一行代码,SND很容易适用于预先训练的模型。
translated by 谷歌翻译
当系统的全面了解时然而,这种技术在灰盒设置中行动不成功,攻击者面部模板未知。在这项工作中,我们提出了一种具有新开发的目标函数的相似性的灰度逆势攻击(SGADV)技术。 SGAdv利用不同的评分来产生优化的对抗性实例,即基于相似性的对抗性攻击。这种技术适用于白盒和灰度箱攻击,针对使用不同分数确定真实或调用用户的身份验证系统。为了验证SGAdv的有效性,我们对LFW,Celeba和Celeba-HQ的面部数据集进行了广泛的实验,反对白盒和灰度箱设置的面部和洞察面的深脸识别模型。结果表明,所提出的方法显着优于灰色盒设置中的现有的对抗性攻击技术。因此,我们总结了开发对抗性示例的相似性基础方法可以令人满意地迎合去认证的灰度箱攻击场景。
translated by 谷歌翻译
基于深度学习的图像识别系统已广泛部署在当今世界的移动设备上。然而,在最近的研究中,深入学习模型被证明易受对抗的例子。一种逆势例的一个变种,称为对抗性补丁,由于其强烈的攻击能力而引起了研究人员的注意。虽然对抗性补丁实现了高攻击成功率,但由于补丁和原始图像之间的视觉不一致,它们很容易被检测到。此外,它通常需要对文献中的对抗斑块产生的大量数据,这是计算昂贵且耗时的。为了解决这些挑战,我们提出一种方法来产生具有一个单一图像的不起眼的对抗性斑块。在我们的方法中,我们首先通过利用多尺度发生器和鉴别器来决定基于受害者模型的感知敏感性的补丁位置,然后以粗糙的方式产生对抗性斑块。鼓励修补程序与具有对抗性训练的背景图像一致,同时保留强烈的攻击能力。我们的方法显示了白盒设置中的强烈攻击能力以及通过对具有不同架构和培训方法的各种型号的广泛实验,通过广泛的实验进行黑盒设置的优异转移性。与其他对抗贴片相比,我们的对抗斑块具有最大忽略的风险,并且可以避免人类观察,这是由显着性图和用户评估结果的插图支持的人类观察。最后,我们表明我们的对抗性补丁可以应用于物理世界。
translated by 谷歌翻译