视觉变压器(VIT)竞争替代卷积神经网络(CNN),以完成医学成像中的各种计算机视觉任务,例如分类和分割。尽管CNN对对抗攻击的脆弱性是一个众所周知的问题,但最近的作品表明,VIT也容易受到此类攻击的影响,并且在攻击下遭受了重大的绩效退化。 VIT易于精心设计的对抗样品的脆弱性引起了人们对它们在临床环境中的安全性的严重关注。在本文中,我们提出了一种新型的自我浓缩方法,以在存在对抗性攻击的情况下增强VIT的鲁棒性。拟议的自我启发变压器(SEVIT)利用了一个事实,即通过VIT的初始块学到的特征表示相对不受对抗性扰动的影响。根据这些中间特征表示,学习多个分类器,并将这些预测与最终VIT分类器的预测相结合可以为对抗性攻击提供鲁棒性。测量各种预测之间的一致性也可以帮助检测对抗样本。对两种方式(胸部X射线和基础镜检查)进行的实验证明了SEVIT体系结构在灰色框中防御各种对抗性攻击的功效(攻击者对目标模型有充分的了解,但没有防御机制)设置。代码:https://github.com/faresmalik/sevit
translated by 谷歌翻译
视觉变形金刚(VITS)处理将图像输入图像作为通过自我关注的斑块;比卷积神经网络(CNNS)彻底不同的结构。这使得研究Vit模型的对抗特征空间及其可转移性有趣。特别是,我们观察到通过常规逆势攻击发现的对抗性模式,即使对于大型Vit模型,也表现出非常低的黑箱可转移性。但是,我们表明这种现象仅是由于不利用VITS的真实表示潜力的次优攻击程序。深紫色由多个块组成,具有一致的架构,包括自我关注和前馈层,其中每个块能够独立地产生类令牌。仅使用最后一类令牌(传统方法)制定攻击并不直接利用存储在早期令牌中的辨别信息,从而导致VITS的逆势转移性差。使用Vit模型的组成性质,我们通过引入特定于Vit模型结构的两种新策略来增强现有攻击的可转移性。 (i)自我合奏:我们提出了一种通过将单vit模型解剖到网络的集合来找到多种判别途径的方法。这允许在每个VIT块处明确地利用特定于类信息。 (ii)令牌改进:我们建议改进令牌,以进一步增强每种Vit障碍的歧视能力。我们的令牌细化系统地将类令牌系统组合在补丁令牌中保留的结构信息。在一个视觉变压器中发现的分类器的集合中应用于此类精炼令牌时,对抗攻击具有明显更高的可转移性。
translated by 谷歌翻译
这项工作是对对使用Dino训练的自我监督视觉变压器的对抗性攻击的鲁棒性进行的首次分析。首先,我们评估通过自学学历的特征是否比受到监督学习中出现的人更强大。然后,我们介绍在潜在空间中攻击的属性。最后,我们评估了三种著名的防御策略是否可以通过微调分类头来提高下游任务中的对抗性鲁棒性,即使考虑到有限的计算资源,也可以提供鲁棒性。这些防御策略是:对抗性训练,合奏对抗训练和专业网络的合奏。
translated by 谷歌翻译
尽管大量研究专门用于变形检测,但大多数研究都无法推广其在训练范式之外的变形面。此外,最近的变体检测方法非常容易受到对抗攻击的影响。在本文中,我们打算学习一个具有高概括的变体检测模型,以对各种形态攻击和对不同的对抗攻击的高度鲁棒性。为此,我们开发了卷积神经网络(CNN)和变压器模型的合奏,以同时受益于其能力。为了提高整体模型的鲁棒精度,我们采用多扰动对抗训练,并生成具有高可传递性的对抗性示例。我们详尽的评估表明,提出的强大合奏模型将概括为几个变形攻击和面部数据集。此外,我们验证了我们的稳健集成模型在超过最先进的研究的同时,对几次对抗性攻击获得了更好的鲁棒性。
translated by 谷歌翻译
在难以察觉的对抗性示例攻击时被发现深度神经网络是不稳定的,这对于它施加到需要高可靠性的医学诊断系统是危险的。然而,在自然图像中具有良好效果的防御方法可能不适合医疗诊断任务。预处理方法(例如,随机调整大小,压缩)可能导致医学图像中的小病变特征的损失。在增强的数据集中培训网络对已经在线部署的医疗模型也不实用。因此,有必要为医疗诊断任务设计易于部署和有效的防御框架。在本文中,我们为反对对抗性攻击(即Medrdf)的医疗净化模型提出了较强和初稿的初步诊断框架。它采用了Pertined Medical模型的推理时间。具体地,对于每个测试图像,MEDRDF首先创建它的大量噪声副本,并从预训经医学诊断模型获得这些副本的输出标签。然后,基于这些副本的标签,MEDRDF通过多数投票输出最终的稳健诊断结果。除了诊断结果之外,MedRDF还产生强大的公制(RM)作为结果的置信度。因此,利用MEDRDF将预先训练的非强大诊断模型转换为强大的,是方便且可靠的。 Covid-19和Dermamnist数据集的实验结果验证了MEDRDF在提高医疗模型的稳健性方面的有效性。
translated by 谷歌翻译
深度神经网络(DNN)众所周知,很容易受到对抗例子的影响(AES)。此外,AE具有对抗性可传递性,这意味着为源模型生成的AE可以以非平凡的概率欺骗另一个黑框模型(目标模型)。在本文中,我们首次研究了包括Convmixer在内的模型之间的对抗性转移性的属性。为了客观地验证可转让性的属性,使用称为AutoAttack的基准攻击方法评估模型的鲁棒性。在图像分类实验中,Convmixer被确认对对抗性转移性较弱。
translated by 谷歌翻译
基于深度神经网络的医学图像系统容易受到对抗的例子。在文献中提出了许多防御机制,然而,现有的防御者假设被动攻击者对防御系统知之甚少,并没有根据防御改变攻击战略。最近的作品表明,一个强大的自适应攻击,攻击者被认为具有完全了解防御系统的知识,可以轻松绕过现有的防御。在本文中,我们提出了一种名为Medical Aegis的新型对抗性示例防御系统。据我们所知,医疗AEGIS是文献中的第一次防范,成功地解决了对医学图像的强烈适应性的对抗性示例攻击。医疗AEGIS拥有两层保护剂:第一层垫通过去除其高频分量而削弱了攻击的对抗性操纵能力,但对原始图像的分类性能构成了最小的影响;第二层盾牌学习一组每级DNN模型来预测受保护模型的登录。偏离屏蔽的预测表明对抗性示例。盾牌受到在我们的压力测试中的观察中的观察,即在DNN模型的浅层中存在坚固的小径,自适应攻击难以破坏。实验结果表明,建议的防御精确地检测了自适应攻击,模型推理的开销具有可忽略的开销。
translated by 谷歌翻译
Vulnerability to adversarial attacks is a well-known weakness of Deep Neural Networks. While most of the studies focus on natural images with standardized benchmarks like ImageNet and CIFAR, little research has considered real world applications, in particular in the medical domain. Our research shows that, contrary to previous claims, robustness of chest x-ray classification is much harder to evaluate and leads to very different assessments based on the dataset, the architecture and robustness metric. We argue that previous studies did not take into account the peculiarity of medical diagnosis, like the co-occurrence of diseases, the disagreement of labellers (domain experts), the threat model of the attacks and the risk implications for each successful attack. In this paper, we discuss the methodological foundations, review the pitfalls and best practices, and suggest new methodological considerations for evaluating the robustness of chest xray classification models. Our evaluation on 3 datasets, 7 models, and 18 diseases is the largest evaluation of robustness of chest x-ray classification models.
translated by 谷歌翻译
随着在图像识别中的快速进步和深度学习模型的使用,安全成为他们在安全关键系统中部署的主要关注点。由于深度学习模型的准确性和稳健性主要归因于训练样本的纯度,因此深度学习架构通常易于对抗性攻击。通过对正常图像进行微妙的扰动来获得对抗性攻击,这主要是人类,但可以严重混淆最先进的机器学习模型。什么特别的智能扰动或噪声在正常图像上添加了它导致深神经网络的灾难性分类?使用统计假设检测,我们发现条件变形自身偏析器(CVAE)令人惊讶地擅长检测难以察觉的图像扰动。在本文中,我们展示了CVAE如何有效地用于检测对图像分类网络的对抗攻击。我们展示了我们的成果,Cifar-10数据集,并展示了我们的方法如何为先前的方法提供可比性,以检测对手,同时不会与嘈杂的图像混淆,其中大多数现有方法都摇摇欲坠。
translated by 谷歌翻译
There has been a concurrent significant improvement in the medical images used to facilitate diagnosis and the performance of machine learning techniques to perform tasks such as classification, detection, and segmentation in recent years. As a result, a rapid increase in the usage of such systems can be observed in the healthcare industry, for instance in the form of medical image classification systems, where these models have achieved diagnostic parity with human physicians. One such application where this can be observed is in computer vision tasks such as the classification of skin lesions in dermatoscopic images. However, as stakeholders in the healthcare industry, such as insurance companies, continue to invest extensively in machine learning infrastructure, it becomes increasingly important to understand the vulnerabilities in such systems. Due to the highly critical nature of the tasks being carried out by these machine learning models, it is necessary to analyze techniques that could be used to take advantage of these vulnerabilities and methods to defend against them. This paper explores common adversarial attack techniques. The Fast Sign Gradient Method and Projected Descent Gradient are used against a Convolutional Neural Network trained to classify dermatoscopic images of skin lesions. Following that, it also discusses one of the most popular adversarial defense techniques, adversarial training. The performance of the model that has been trained on adversarial examples is then tested against the previously mentioned attacks, and recommendations to improve neural networks robustness are thus provided based on the results of the experiment.
translated by 谷歌翻译
在本文中,我们询问视觉变形金刚(VIT)是否可以作为改善机器学习模型对抗逃避攻击的对抗性鲁棒性的基础结构。尽管较早的作品集中在改善卷积神经网络上,但我们表明VIT也非常适合对抗训练以实现竞争性能。我们使用自定义的对抗训练配方实现了这一目标,该配方是在Imagenet数据集的一部分上使用严格的消融研究发现的。与卷积相比,VIT的规范培训配方建议强大的数据增强,部分是为了补偿注意力模块的视力归纳偏置。我们表明,该食谱在用于对抗训练时可实现次优性能。相比之下,我们发现省略所有重型数据增强,并添加一些额外的零件($ \ varepsilon $ -Warmup和更大的重量衰减),从而大大提高了健壮的Vits的性能。我们表明,我们的配方在完整的Imagenet-1k上概括了不同类别的VIT体系结构和大规模模型。此外,调查了模型鲁棒性的原因,我们表明,在使用我们的食谱时,在训练过程中产生强烈的攻击更加容易,这会在测试时提高鲁棒性。最后,我们通过提出一种量化对抗性扰动的语义性质并强调其与模型的鲁棒性的相关性来进一步研究对抗训练的结果。总体而言,我们建议社区应避免将VIT的规范培训食谱转换为在对抗培训的背景下进行强大的培训和重新思考常见的培训选择。
translated by 谷歌翻译
视觉变压器(VIT)在各种机器视觉问题上表现出令人印象深刻的性能。这些模型基于多头自我关注机制,可以灵活地参加一系列图像修补程序以编码上下文提示。一个重要问题是在给定贴片上参加图像范围内的上下文的这种灵活性是如何促进在自然图像中处理滋扰,例如,严重的闭塞,域移位,空间置换,对抗和天然扰动。我们通过广泛的一组实验来系统地研究了这个问题,包括三个vit家族和具有高性能卷积神经网络(CNN)的比较。我们展示和分析了vit的以下迷恋性质:(a)变压器对严重闭塞,扰动和域移位高度稳健,例如,即使在随机堵塞80%的图像之后,也可以在想象中保持高达60%的前1个精度。内容。 (b)与局部纹理的偏置有抗闭锁的强大性能,与CNN相比,VITS对纹理的偏置显着偏差。当受到适当训练以编码基于形状的特征时,VITS展示与人类视觉系统相当的形状识别能力,以前在文献中无与伦比。 (c)使用VIT来编码形状表示导致准确的语义分割而没有像素级监控的有趣后果。 (d)可以组合从单VIT模型的现成功能,以创建一个功能集合,导致传统和几枪学习范例的一系列分类数据集中的高精度率。我们显示VIT的有效特征是由于自我关注机制可以实现灵活和动态的接受领域。
translated by 谷歌翻译
视觉变压器(VITS)在一系列计算机视觉任务上表现出令人印象深刻的性能,但它们仍然遭受对抗的例子。 %以与CNN类似的方式制作。在本文中,我们对变压器的对抗攻击应特别适合其架构,共同考虑斑块和自我关注,以实现高可转移性。更具体地说,我们介绍了一种双攻击框架,其中包含不关注(PNA)攻击和果末攻击,以改善对抗不同风格的对抗性样本的可转移性。我们表明,在背部衰退期间跳过关注的梯度可以产生具有高可转换性的对抗性示例。此外,通过优化在每个迭代的随机采样的斑块的随机采样子集产生的对抗扰动,该次迭代的成功率比使用所有补丁的攻击实现了更高的攻击成功率。我们评估攻击最先进的VITS,CNN和强大的CNNS的可转移性。这些实验的结果表明,所提出的双重攻击可以大大提高VITS与VITS之间的转移性。此外,所提出的方法可以容易地与现有的传输方法组合以提高性能。代码可在https://github.com/zhipeng-wei/pna-patchout获得。
translated by 谷歌翻译
考虑到整个时间领域的信息有助于改善自动驾驶中的环境感知。但是,到目前为止,尚未研究暂时融合的神经网络是否容易受到故意产生的扰动,即对抗性攻击,或者时间历史是否是对它们的固有防御。在这项工作中,我们研究了用于对象检测的时间特征网络是否容易受到通用对抗性攻击的影响。我们评估了两种类型的攻击:整个图像和本地界面贴片的不可察觉噪声。在这两种情况下,使用PGD以白盒方式生成扰动。我们的实验证实,即使攻击时间的一部分时间都足以欺骗网络。我们在视觉上评估生成的扰动,以了解攻击功能。为了增强鲁棒性,我们使用5-PGD应用对抗训练。我们在Kitti和Nuscenes数据集上进行的实验证明了通过K-PGD鲁棒化的模型能够承受研究的攻击,同时保持基于地图的性能与未破坏模型的攻击。
translated by 谷歌翻译
通过对数据集的样本应用小而有意的最差情况扰动可以产生对抗性输入,这导致甚至最先进的深神经网络,以高信任输出不正确的答案。因此,开发了一些对抗防御技术来提高模型的安全性和稳健性,并避免它们被攻击。逐渐,攻击者和捍卫者之间的游戏类似的竞争,其中两个玩家都会试图在最大化自己的收益的同时互相反对发挥最佳策略。为了解决游戏,每个玩家都基于对对手的战略选择的预测来选择反对对手的最佳策略。在这项工作中,我们正处于防守方面,以申请防止攻击的游戏理论方法。我们使用两个随机化方法,随机初始化和随机激活修剪,以创造网络的多样性。此外,我们使用一种去噪技术,超级分辨率,通过在攻击前预处理图像来改善模型的鲁棒性。我们的实验结果表明,这三种方法可以有效提高深度学习神经网络的鲁棒性。
translated by 谷歌翻译
对手补丁攻击旨在通过在输入图像的限制区域内任意修改像素来欺骗机器学习模型。这种攻击是对部署在物理世界中的模型的主要威胁,因为通过在相机视图中呈现自定义对象,可以容易地实现它们。由于补丁的任意性,防止这种攻击措施是挑战,并且现有的可提供防御遭受较差的认证准确性。本文提出了根据视觉变压器(VIV)模型的对抗对抗斑块的零点认证防御。而不是训练强大的模型来抵抗可能不可避免地牺牲精度的对抗斑块,而是在没有任何额外训练的情况下重用预纯的VIT模型,这可以通过简单地操纵Vit的注意力地图来达到清洁输入的高精度。具体地,通过用不同的关注掩模投票来测试每个输入,其中至少有一个推断被保证排除对抗修补程序。如果所有掩蔽的推迟达到共识,则预测是可疑的,这确保了不会用假阴性检测到任何对抗性贴剂。广泛的实验表明,PACKVETO能够实现高认证的准确性(例如,在Imagenet中为2%-pixel对抗性贴片的67.1%),显着优于最先进的方法。清洁精度与Vanilla Vit模型相同(想象成81.8%),因​​为模型参数直接重复使用。同时,通过简单地改变掩蔽策略,我们的方法可以灵活地处理不同的对抗斑块尺寸。
translated by 谷歌翻译
虽然深度神经网络(DNN)在许多真实的任务中实现了出色的性能,但它们非常容易受到对抗的攻击。对抗这种攻击的主要防御是对抗的,一种技术,通过将对抗噪声引入其输入来训练DNN培训以训练为对抗性攻击的技术。此程序是有效的,但必须在培训阶段进行。在这项工作中,我们提出了增强随机森林(ARF),这是一个简单易用的策略,用于在不修改其权重的情况下强化现有的预磨损DNN。对于每个图像,我们通过应用不同颜色,模糊,噪声和几何变换来生成随机测试时间增强。然后我们使用DNN的Logits输出来训练一个简单的随机林来预测真正的类标签。我们的方法在自然图像的分类上最小的妥协,实现了最先进的对抗鲁棒性对白和黑匣子攻击的多样性。我们也针对许多适应性的白盒攻击测试ARF,并在与对抗训练结合时显示出优异的结果。代码可在https://github.com/giladcohen/arf获得。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
视力变压器由于其出色的性能而越来越多地嵌入工业系统中,但是它们的记忆力和力量要求使它们部署到边缘设备是一项艰巨的任务。因此,现在,模型压缩技术被广泛用于在边缘设备上部署模型,因为它们减少了资源需求并使模型推理非常快速有效。但是,从安全角度来看,它们的可靠性和鲁棒性是安全至关重要应用中的另一个主要问题。对抗性攻击就像ML算法的光学幻象一样,它们可能会严重影响模型的准确性和可靠性。在这项工作中,我们研究了对抗样品在SOTA视觉变压器模型上跨3个SOTA压缩版本的可传递性,并推断出不同压缩技术对对抗攻击的影响。
translated by 谷歌翻译
视觉变压器(VIT)是卷积神经网络(CNN)的强大替代方案,引起了很多关注。最近的工作表明,VIT也容易受到CNN等对抗性例子的影响。为了建立强大的VIT,一种直观的方法是应用对抗训练,因为它已被证明是完成强大CNN的最有效方法之一。但是,对抗性培训的一个主要局限性是其沉重的计算成本。 VIT所采用的自我注意力的机制是计算强度的操作,其费用随输入贴片的数量四次增加,从而使VIT上的对抗性训练更加耗时。在这项工作中,我们首先全面研究了有关各种视觉变压器的快速对抗训练,并说明了效率和鲁棒性之间的关系。然后,为了加快对VIT的对抗训练,我们提出了一种有效的注意力引导的对抗训练机制。具体而言,依靠自我注意的专长,我们在对抗训练过程中以注意引导策略的掉落策略积极地嵌入了每一层的某些斑块嵌入。纤细的自我发场模块大大加速了对VIT的对抗训练。只有65%的快速对抗训练时间,我们与具有挑战性的成像网基准相匹配。
translated by 谷歌翻译