梯度下降(GD)是现代机器学习的强大主力,这要归功于其在高维空间中的可扩展性和效率。它可以找到本地最小剂的能力仅保证使用Lipschitz梯度损失,在这种梯度上可以看作是基础梯度流的“真正的”离散化。然而,许多涉及过份术模型的ML设置并不属于这个问题类别,该类别激发了所谓的“稳定边缘”以外的研究,其中阶梯规模跨越了与上述Lipschitz常数成反比的可接受性阈值。也许令人惊讶的是,无论局部不稳定如何,GD还是经验观察到仍然会融合。在这项工作中,我们研究了在低维环境中围绕本地微型赛的这种不稳定收敛的局部条件。然后,我们利用这些见解来建立一个两层单神经元的学生网络与老师神经元的一致性,以大量学习率在人口损失下的稳定边缘之外。同时,虽然两层规范的差异通过梯度流得到保留,但我们表明,稳定性边缘上方的GD会诱导平衡效果,从而导致整个层的相同规范。
translated by 谷歌翻译
Existing analyses of neural network training often operate under the unrealistic assumption of an extremely small learning rate. This lies in stark contrast to practical wisdom and empirical studies, such as the work of J. Cohen et al. (ICLR 2021), which exhibit startling new phenomena (the "edge of stability" or "unstable convergence") and potential benefits for generalization in the large learning rate regime. Despite a flurry of recent works on this topic, however, the latter effect is still poorly understood. In this paper, we take a step towards understanding genuinely non-convex training dynamics with large learning rates by performing a detailed analysis of gradient descent for simplified models of two-layer neural networks. For these models, we provably establish the edge of stability phenomenon and discover a sharp phase transition for the step size below which the neural network fails to learn "threshold-like" neurons (i.e., neurons with a non-zero first-layer bias). This elucidates one possible mechanism by which the edge of stability can in fact lead to better generalization, as threshold neurons are basic building blocks with useful inductive bias for many tasks.
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译
神经网络损失景观的二次近似已被广泛用于研究这些网络的优化过程。但是,它通常位于最低限度的一个很小的社区,但无法解释在优化过程中观察到的许多现象。在这项工作中,我们研究了神经网络损失函数的结构及其对超出良好二次近似范围的区域中优化的影响。从数值上讲,我们观察到神经网络损失功能具有多尺度结构,以两种方式表现出来:(1)在Minima的社区中,损失将量表的连续体和次级次序增长,(2)在较大的区域,损失,损失,损失,清楚地显示了几个单独的秤。使用次级生长,我们能够解释梯度下降(GD)方法观察到的稳定现象的边缘[5]。使用单独的量表,我们通过简单示例解释学习率衰减的工作机理。最后,我们研究了多尺度结构的起源,并提出模型的非跨性别性和训练数据的不均匀性是原因之一。通过构建两层神经网络问题,我们表明,具有不同幅度的训练数据会产生损失函数的不同尺度,从而产生次级生长和多个单独的尺度。
translated by 谷歌翻译
最近的发现(例如ARXIV:2103.00065)表明,通过全批梯度下降训练的现代神经网络通常进入一个称为稳定边缘(EOS)的政权。在此制度中,清晰度(即最大的Hessian特征值)首先增加到值2/(步长尺寸)(渐进锐化阶段),然后在该值(EOS相)周围振荡。本文旨在分析沿优化轨迹的GD动力学和清晰度。我们的分析自然将GD轨迹分为四个阶段,具体取决于清晰度的变化。从经验上,我们将输出层重量的规范视为清晰动力学的有趣指标。基于这一经验观察,我们尝试从理论和经验上解释导致EOS每个阶段清晰度变化的各种关键量的动力学。此外,基于某些假设,我们提供了两层完全连接的线性神经网络中EOS制度的清晰度行为的理论证明。我们还讨论了其他一些经验发现以及我们的理论结果的局限性。
translated by 谷歌翻译
引入了归一化层(例如,批处理归一化,层归一化),以帮助在非常深的网中获得优化困难,但它们显然也有助于概括,即使在不太深入的网中也是如此。由于长期以来的信念,即最小的最小值导致更好的概括,本文提供了数学分析和支持实验,这表明归一化(与伴随的重量赛一起)鼓励GD降低损失表面的清晰度。鉴于损失是标准不变的,这是标准化的已知结果,因此仔细地定义了“清晰度”。具体而言,对于具有归一化的相当广泛的神经网类,我们的理论解释了有限学习率的GD如何进入所谓的稳定边缘(EOS)制度,并通过连续的清晰度来表征GD的轨迹 - 还原流。
translated by 谷歌翻译
Sharpness-Aware Minimization (SAM) is a highly effective regularization technique for improving the generalization of deep neural networks for various settings. However, the underlying working of SAM remains elusive because of various intriguing approximations in the theoretical characterizations. SAM intends to penalize a notion of sharpness of the model but implements a computationally efficient variant; moreover, a third notion of sharpness was used for proving generalization guarantees. The subtle differences in these notions of sharpness can indeed lead to significantly different empirical results. This paper rigorously nails down the exact sharpness notion that SAM regularizes and clarifies the underlying mechanism. We also show that the two steps of approximations in the original motivation of SAM individually lead to inaccurate local conclusions, but their combination accidentally reveals the correct effect, when full-batch gradients are applied. Furthermore, we also prove that the stochastic version of SAM in fact regularizes the third notion of sharpness mentioned above, which is most likely to be the preferred notion for practical performance. The key mechanism behind this intriguing phenomenon is the alignment between the gradient and the top eigenvector of Hessian when SAM is applied.
translated by 谷歌翻译
(随机)梯度下降的大多数现有分析都取决于$ l $ smorth成本的条件,步骤尺寸小于$ 2/l $。但是,许多作品观察到,在机器学习中,阶梯尺寸通常无法满足这种情况,但(随机)梯度下降仍在收敛,尽管以不稳定的方式。我们从第一原则研究了这种不稳定的收敛现象,并讨论其背后的关键原因。我们还确定了其主要特征,以及它们如何基于理论和实验相互关联,为理解现象提供了有原则的观点。
translated by 谷歌翻译
过度分化的深网络的泛化神秘具有有动力的努力,了解梯度下降(GD)如何收敛到概括井的低损耗解决方案。现实生活中的神经网络从小随机值初始化,并以分类的“懒惰”或“懒惰”或“NTK”的训练训练,分析更成功,以及最近的结果序列(Lyu和Li ,2020年; Chizat和Bach,2020; Ji和Telgarsky,2020)提供了理论证据,即GD可以收敛到“Max-ramin”解决方案,其零损失可能呈现良好。但是,仅在某些环境中证明了余量的全球最优性,其中神经网络无限或呈指数级宽。目前的纸张能够为具有梯度流动训练的两层泄漏的Relu网,无论宽度如何,都能为具有梯度流动的双层泄漏的Relu网建立这种全局最优性。分析还为最近的经验研究结果(Kalimeris等,2019)给出了一些理论上的理由,就GD的所谓简单的偏见为线性或其他“简单”的解决方案,特别是在训练中。在悲观方面,该论文表明这种结果是脆弱的。简单的数据操作可以使梯度流量会聚到具有次优裕度的线性分类器。
translated by 谷歌翻译
要了解深层relu网络的动态,我们通过将其分解为级级$ w(t)$ and Angle $ \ phi(t):= \ pi- \ theta,研究了梯度流量$ W(t)$的动态系统(t)$组件。特别是,对于具有球形对称数据分布和平方损耗函数的多层单晶元神经元,我们为大小和角度成分提供上限和下限,以描述梯度流动的动力学。使用获得的边界,我们得出结论,小规模初始化会导致深单重质神经元的缓慢收敛速度。最后,通过利用梯度流和梯度下降的关系,我们将结果扩展到梯度下降方法。所有理论结果均通过实验验证。
translated by 谷歌翻译
Artificial neural networks are functions depending on a finite number of parameters typically encoded as weights and biases. The identification of the parameters of the network from finite samples of input-output pairs is often referred to as the \emph{teacher-student model}, and this model has represented a popular framework for understanding training and generalization. Even if the problem is NP-complete in the worst case, a rapidly growing literature -- after adding suitable distributional assumptions -- has established finite sample identification of two-layer networks with a number of neurons $m=\mathcal O(D)$, $D$ being the input dimension. For the range $D<m<D^2$ the problem becomes harder, and truly little is known for networks parametrized by biases as well. This paper fills the gap by providing constructive methods and theoretical guarantees of finite sample identification for such wider shallow networks with biases. Our approach is based on a two-step pipeline: first, we recover the direction of the weights, by exploiting second order information; next, we identify the signs by suitable algebraic evaluations, and we recover the biases by empirical risk minimization via gradient descent. Numerical results demonstrate the effectiveness of our approach.
translated by 谷歌翻译
批准方法,例如批处理[Ioffe和Szegedy,2015],体重[Salimansand Kingma,2016],实例[Ulyanov等,2016]和层归一化[Baet al。,2016]已广泛用于现代机器学习中。在这里,我们研究了体重归一化方法(WN)方法[Salimans和Kingma,2016年],以及一种称为重扎式投影梯度下降(RPGD)的变体,用于过多散热性最小二乘回归。 WN和RPGD用比例G和一个单位向量W重新绘制权重,因此目标函数变为非convex。我们表明,与原始目标的梯度下降相比,这种非凸式配方具有有益的正则化作用。这些方法适应性地使重量正规化并收敛于最小L2规范解决方案,即使初始化远非零。对于G和W的某些步骤,我们表明它们可以收敛于最小规范解决方案。这与梯度下降的行为不同,梯度下降的行为仅在特征矩阵范围内的一个点开始时才收敛到最小规范解,因此对初始化更敏感。
translated by 谷歌翻译
了解随机梯度下降(SGD)的隐式偏见是深度学习的关键挑战之一,尤其是对于过度透明的模型,损失功能的局部最小化$ l $可以形成多种多样的模型。从直觉上讲,SGD $ \ eta $的学习率很小,SGD跟踪梯度下降(GD),直到它接近这种歧管为止,梯度噪声阻止了进一步的收敛。在这样的政权中,Blanc等人。 (2020)证明,带有标签噪声的SGD局部降低了常规术语,损失的清晰度,$ \ mathrm {tr} [\ nabla^2 l] $。当前的论文通过调整Katzenberger(1991)的想法提供了一个总体框架。它原则上允许使用随机微分方程(SDE)描述参数的限制动力学的SGD围绕此歧管的正规化效应(即“隐式偏见”)的正则化效应,这是由损失共同确定的功能和噪声协方差。这产生了一些新的结果:(1)与Blanc等人的局部分析相比,对$ \ eta^{ - 2} $ steps有效的隐性偏差进行了全局分析。 (2020)仅适用于$ \ eta^{ - 1.6} $ steps和(2)允许任意噪声协方差。作为一个应用程序,我们以任意大的初始化显示,标签噪声SGD始终可以逃脱内核制度,并且仅需要$ o(\ kappa \ ln d)$样本用于学习$ \ kappa $ -sparse $ -sparse yroverparame parametrized linearized Linear Modal in $ \ Mathbb {r}^d $(Woodworth等,2020),而GD在内核制度中初始化的GD需要$ \ omega(d)$样本。该上限是最小值的最佳,并改善了先前的$ \ tilde {o}(\ kappa^2)$上限(Haochen等,2020)。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译
探讨了第一层神经网络中的参数和输入数据的乘法结构,以在丢失功能的景观与模型函数的景观与输入数据的景观之间建立连接。通过这种连接,示出了平坦的最小值规范了模型功能的梯度,这解释了扁平最小值的良好泛化性能。然后,我们超越平坦度并考虑梯度噪声的高阶矩,并且表明随机梯度下降(SGD)倾向于通过全球最小值的SGD的线性稳定性分析对这些瞬间施加约束。我们与乘法结构一起,我们识别SGD的SoboLev正则化效果,即SGD对输入数据的模型函数的SoboLev Semininorms进行了规范。最后,提供了在数据分布的假设下由SGD发现的解决方案的泛化误差和逆势鲁棒性的界限。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
在深度学习中的优化分析是连续的,专注于(变体)梯度流动,或离散,直接处理(变体)梯度下降。梯度流程可符合理论分析,但是风格化并忽略计算效率。它代表梯度下降的程度是深度学习理论的一个开放问题。目前的论文研究了这个问题。将梯度下降视为梯度流量初始值问题的近似数值问题,发现近似程度取决于梯度流动轨迹周围的曲率。然后,我们表明,在具有均匀激活的深度神经网络中,梯度流动轨迹享有有利的曲率,表明它们通过梯度下降近似地近似。该发现允许我们将深度线性神经网络的梯度流分析转换为保证梯度下降,其几乎肯定会在随机初始化下有效地收敛到全局最小值。实验表明,在简单的深度神经网络中,具有传统步长的梯度下降确实接近梯度流。我们假设梯度流动理论将解开深入学习背后的奥秘。
translated by 谷歌翻译
This paper shows that a perturbed form of gradient descent converges to a second-order stationary point in a number iterations which depends only poly-logarithmically on dimension (i.e., it is almost "dimension-free"). The convergence rate of this procedure matches the wellknown convergence rate of gradient descent to first-order stationary points, up to log factors. When all saddle points are non-degenerate, all second-order stationary points are local minima, and our result thus shows that perturbed gradient descent can escape saddle points almost for free.Our results can be directly applied to many machine learning applications, including deep learning. As a particular concrete example of such an application, we show that our results can be used directly to establish sharp global convergence rates for matrix factorization. Our results rely on a novel characterization of the geometry around saddle points, which may be of independent interest to the non-convex optimization community.
translated by 谷歌翻译
低维歧管假设认为,在许多应用中发现的数据,例如涉及自然图像的数据(大约)位于嵌入高维欧几里得空间中的低维歧管上。在这种情况下,典型的神经网络定义了一个函数,该函数在嵌入空间中以有限数量的向量作为输入。但是,通常需要考虑在训练分布以外的点上评估优化网络。本文考虑了培训数据以$ \ mathbb r^d $的线性子空间分配的情况。我们得出对由神经网络定义的学习函数变化的估计值,沿横向子空间的方向。我们研究了数据歧管的编纂中与网络的深度和噪声相关的潜在正则化效应。由于存在噪声,我们还提出了训练中的其他副作用。
translated by 谷歌翻译