神经网络损失景观的二次近似已被广泛用于研究这些网络的优化过程。但是,它通常位于最低限度的一个很小的社区,但无法解释在优化过程中观察到的许多现象。在这项工作中,我们研究了神经网络损失函数的结构及其对超出良好二次近似范围的区域中优化的影响。从数值上讲,我们观察到神经网络损失功能具有多尺度结构,以两种方式表现出来:(1)在Minima的社区中,损失将量表的连续体和次级次序增长,(2)在较大的区域,损失,损失,损失,清楚地显示了几个单独的秤。使用次级生长,我们能够解释梯度下降(GD)方法观察到的稳定现象的边缘[5]。使用单独的量表,我们通过简单示例解释学习率衰减的工作机理。最后,我们研究了多尺度结构的起源,并提出模型的非跨性别性和训练数据的不均匀性是原因之一。通过构建两层神经网络问题,我们表明,具有不同幅度的训练数据会产生损失函数的不同尺度,从而产生次级生长和多个单独的尺度。
translated by 谷歌翻译
探讨了第一层神经网络中的参数和输入数据的乘法结构,以在丢失功能的景观与模型函数的景观与输入数据的景观之间建立连接。通过这种连接,示出了平坦的最小值规范了模型功能的梯度,这解释了扁平最小值的良好泛化性能。然后,我们超越平坦度并考虑梯度噪声的高阶矩,并且表明随机梯度下降(SGD)倾向于通过全球最小值的SGD的线性稳定性分析对这些瞬间施加约束。我们与乘法结构一起,我们识别SGD的SoboLev正则化效果,即SGD对输入数据的模型函数的SoboLev Semininorms进行了规范。最后,提供了在数据分布的假设下由SGD发现的解决方案的泛化误差和逆势鲁棒性的界限。
translated by 谷歌翻译
梯度下降(GD)是现代机器学习的强大主力,这要归功于其在高维空间中的可扩展性和效率。它可以找到本地最小剂的能力仅保证使用Lipschitz梯度损失,在这种梯度上可以看作是基础梯度流的“真正的”离散化。然而,许多涉及过份术模型的ML设置并不属于这个问题类别,该类别激发了所谓的“稳定边缘”以外的研究,其中阶梯规模跨越了与上述Lipschitz常数成反比的可接受性阈值。也许令人惊讶的是,无论局部不稳定如何,GD还是经验观察到仍然会融合。在这项工作中,我们研究了在低维环境中围绕本地微型赛的这种不稳定收敛的局部条件。然后,我们利用这些见解来建立一个两层单神经元的学生网络与老师神经元的一致性,以大量学习率在人口损失下的稳定边缘之外。同时,虽然两层规范的差异通过梯度流得到保留,但我们表明,稳定性边缘上方的GD会诱导平衡效果,从而导致整个层的相同规范。
translated by 谷歌翻译
引入了归一化层(例如,批处理归一化,层归一化),以帮助在非常深的网中获得优化困难,但它们显然也有助于概括,即使在不太深入的网中也是如此。由于长期以来的信念,即最小的最小值导致更好的概括,本文提供了数学分析和支持实验,这表明归一化(与伴随的重量赛一起)鼓励GD降低损失表面的清晰度。鉴于损失是标准不变的,这是标准化的已知结果,因此仔细地定义了“清晰度”。具体而言,对于具有归一化的相当广泛的神经网类,我们的理论解释了有限学习率的GD如何进入所谓的稳定边缘(EOS)制度,并通过连续的清晰度来表征GD的轨迹 - 还原流。
translated by 谷歌翻译
(随机)梯度下降的大多数现有分析都取决于$ l $ smorth成本的条件,步骤尺寸小于$ 2/l $。但是,许多作品观察到,在机器学习中,阶梯尺寸通常无法满足这种情况,但(随机)梯度下降仍在收敛,尽管以不稳定的方式。我们从第一原则研究了这种不稳定的收敛现象,并讨论其背后的关键原因。我们还确定了其主要特征,以及它们如何基于理论和实验相互关联,为理解现象提供了有原则的观点。
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译
最近的发现(例如ARXIV:2103.00065)表明,通过全批梯度下降训练的现代神经网络通常进入一个称为稳定边缘(EOS)的政权。在此制度中,清晰度(即最大的Hessian特征值)首先增加到值2/(步长尺寸)(渐进锐化阶段),然后在该值(EOS相)周围振荡。本文旨在分析沿优化轨迹的GD动力学和清晰度。我们的分析自然将GD轨迹分为四个阶段,具体取决于清晰度的变化。从经验上,我们将输出层重量的规范视为清晰动力学的有趣指标。基于这一经验观察,我们尝试从理论和经验上解释导致EOS每个阶段清晰度变化的各种关键量的动力学。此外,基于某些假设,我们提供了两层完全连接的线性神经网络中EOS制度的清晰度行为的理论证明。我们还讨论了其他一些经验发现以及我们的理论结果的局限性。
translated by 谷歌翻译
Existing analyses of neural network training often operate under the unrealistic assumption of an extremely small learning rate. This lies in stark contrast to practical wisdom and empirical studies, such as the work of J. Cohen et al. (ICLR 2021), which exhibit startling new phenomena (the "edge of stability" or "unstable convergence") and potential benefits for generalization in the large learning rate regime. Despite a flurry of recent works on this topic, however, the latter effect is still poorly understood. In this paper, we take a step towards understanding genuinely non-convex training dynamics with large learning rates by performing a detailed analysis of gradient descent for simplified models of two-layer neural networks. For these models, we provably establish the edge of stability phenomenon and discover a sharp phase transition for the step size below which the neural network fails to learn "threshold-like" neurons (i.e., neurons with a non-zero first-layer bias). This elucidates one possible mechanism by which the edge of stability can in fact lead to better generalization, as threshold neurons are basic building blocks with useful inductive bias for many tasks.
translated by 谷歌翻译
了解随机梯度下降(SGD)的隐式偏见是深度学习的关键挑战之一,尤其是对于过度透明的模型,损失功能的局部最小化$ l $可以形成多种多样的模型。从直觉上讲,SGD $ \ eta $的学习率很小,SGD跟踪梯度下降(GD),直到它接近这种歧管为止,梯度噪声阻止了进一步的收敛。在这样的政权中,Blanc等人。 (2020)证明,带有标签噪声的SGD局部降低了常规术语,损失的清晰度,$ \ mathrm {tr} [\ nabla^2 l] $。当前的论文通过调整Katzenberger(1991)的想法提供了一个总体框架。它原则上允许使用随机微分方程(SDE)描述参数的限制动力学的SGD围绕此歧管的正规化效应(即“隐式偏见”)的正则化效应,这是由损失共同确定的功能和噪声协方差。这产生了一些新的结果:(1)与Blanc等人的局部分析相比,对$ \ eta^{ - 2} $ steps有效的隐性偏差进行了全局分析。 (2020)仅适用于$ \ eta^{ - 1.6} $ steps和(2)允许任意噪声协方差。作为一个应用程序,我们以任意大的初始化显示,标签噪声SGD始终可以逃脱内核制度,并且仅需要$ o(\ kappa \ ln d)$样本用于学习$ \ kappa $ -sparse $ -sparse yroverparame parametrized linearized Linear Modal in $ \ Mathbb {r}^d $(Woodworth等,2020),而GD在内核制度中初始化的GD需要$ \ omega(d)$样本。该上限是最小值的最佳,并改善了先前的$ \ tilde {o}(\ kappa^2)$上限(Haochen等,2020)。
translated by 谷歌翻译
批准方法,例如批处理[Ioffe和Szegedy,2015],体重[Salimansand Kingma,2016],实例[Ulyanov等,2016]和层归一化[Baet al。,2016]已广泛用于现代机器学习中。在这里,我们研究了体重归一化方法(WN)方法[Salimans和Kingma,2016年],以及一种称为重扎式投影梯度下降(RPGD)的变体,用于过多散热性最小二乘回归。 WN和RPGD用比例G和一个单位向量W重新绘制权重,因此目标函数变为非convex。我们表明,与原始目标的梯度下降相比,这种非凸式配方具有有益的正则化作用。这些方法适应性地使重量正规化并收敛于最小L2规范解决方案,即使初始化远非零。对于G和W的某些步骤,我们表明它们可以收敛于最小规范解决方案。这与梯度下降的行为不同,梯度下降的行为仅在特征矩阵范围内的一个点开始时才收敛到最小规范解,因此对初始化更敏感。
translated by 谷歌翻译
深度学习的概括分析通常假定训练会收敛到固定点。但是,最近的结果表明,实际上,用随机梯度下降优化的深神经网络的权重通常无限期振荡。为了减少理论和实践之间的这种差异,本文着重于神经网络的概括,其训练动力不一定会融合到固定点。我们的主要贡献是提出一个统计算法稳定性(SAS)的概念,该算法将经典算法稳定性扩展到非convergergent算法并研究其与泛化的联系。与传统的优化和学习理论观点相比,这种崇高的理论方法可导致新的见解。我们证明,学习算法的时间复杂行为的稳定性与其泛化有关,并在经验上证明了损失动力学如何为概括性能提供线索。我们的发现提供了证据表明,即使训练无限期继续并且权重也不会融合,即使训练持续进行训练,训练更好地概括”的网络也是如此。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
随机梯度下降(SGD)有利于最小值的观察结果在理解SGD的隐式正则化和指导超参数调整方面发挥了基本作用。在本文中,我们通过将SGD的特定噪声结构与其\ emph {线性稳定性}相关联(Wu et al。,2018),对这种引人注目的现象提供了定量解释。具体而言,我们考虑培训具有正方形损失的过度参数化模型。我们证明,如果全局最低$ \ theta^*$是线性稳定的,则必须满足$ \ | h(\ theta^*)\ | _f \ leq o(\ sqrt {b}/\ eta)$ ,其中$ \ | h(\ theta^*)\ | _f,b,\ eta $分别表示Hessian的Frobenius Norm,分别为$ \ theta^*$,批处理大小和学习率。否则,SGD将快速逃离该最小值\ emph {指数}。因此,对于SGD可访问的最小值,通过Hessian的Frobenius Norm衡量的平坦度与模型尺寸和样本尺寸无关。获得这些结果的关键是利用SGD噪声的特定几何学意识:1)噪声幅度与损失值成正比; 2)噪声方向集中在当地景观的尖锐方向上。 SGD噪声的这种属性证明是线性网络和随机特征模型(RFM),并在非线性网络进行了经验验证。此外,我们的理论发现的有效性和实际相关性是通过广泛的数值实验证明的。
translated by 谷歌翻译
关于自适应梯度方法等自适应梯度方法等训练动力的知之甚少。在本文中,我们阐明了这些算法在全批处理和足够大的批处理设置中的行为。具体而言,我们从经验上证明,在全批训练中,预处理的Hessian的最大特征值通常在某个数值下平衡 - 梯度下降算法的稳定性阈值。对于带有步长$ \ eta $和$ \ beta_1 = 0.9 $的Adam,此稳定性阈值为$ 38/\ eta $。在Minibatch培训期间发生了类似的影响,尤其是随着批处理大小的增长。然而,即使自适应方法在``稳定性的自适应边缘''(AEOS)上训练,但它们在该制度中的行为与EOS的非自适应方法的行为有很大不同。 EOS处的非自适应算法被阻止进入损失景观的高曲率区域,而AEOS的自适应梯度方法可以继续前进到高外观区域,同时适应预先调节器以补偿。我们的发现可以成为社区对深度学习中适应性梯度方法的未来理解的基础。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
Deep Learning optimization involves minimizing a high-dimensional loss function in the weight space which is often perceived as difficult due to its inherent difficulties such as saddle points, local minima, ill-conditioning of the Hessian and limited compute resources. In this paper, we provide a comprehensive review of 12 standard optimization methods successfully used in deep learning research and a theoretical assessment of the difficulties in numerical optimization from the optimization literature.
translated by 谷歌翻译
低维歧管假设认为,在许多应用中发现的数据,例如涉及自然图像的数据(大约)位于嵌入高维欧几里得空间中的低维歧管上。在这种情况下,典型的神经网络定义了一个函数,该函数在嵌入空间中以有限数量的向量作为输入。但是,通常需要考虑在训练分布以外的点上评估优化网络。本文考虑了培训数据以$ \ mathbb r^d $的线性子空间分配的情况。我们得出对由神经网络定义的学习函数变化的估计值,沿横向子空间的方向。我们研究了数据歧管的编纂中与网络的深度和噪声相关的潜在正则化效应。由于存在噪声,我们还提出了训练中的其他副作用。
translated by 谷歌翻译
我们研究随机梯度下降(SGD)动态轨迹的统计特性。我们将Mini-Batch SGD和动量SGD视为随机微分方程(SDES)。我们利用了SDE的连续制定和Fokker-Planck方程的理论,在逃避现象和大批次和尖锐最小值的关系中开发新结果。特别是,我们发现随机过程解决方案倾向于会聚到渐渐的最小值,而无论渐近状态中的批量大小如何。但是,收敛速度严格被证明依赖于批量尺寸。这些结果经验验证了各种数据集和模型。
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译
我们研究了使用尖刺,现场依赖的随机矩阵理论研究迷你批次对深神经网络损失景观的影响。我们表明,批量黑森州的极值值的大小大于经验丰富的黑森州。我们还获得了类似的结果对Hessian的概括高斯牛顿矩阵近似。由于我们的定理,我们推导出作为批量大小的最大学习速率的分析表达式,为随机梯度下降(线性缩放)和自适应算法(例如ADAM(Square Root Scaling)提供了通知实际培训方案,例如光滑,非凸深神经网络。虽然随机梯度下降的线性缩放是在我们概括的更多限制性条件下导出的,但是适应优化者的平方根缩放规则是我们的知识,完全小说。随机二阶方法和自适应方法的百分比,我们得出了最小阻尼系数与学习率与批量尺寸的比率成比例。我们在Cifar-$ 100 $和ImageNet数据集上验证了我们的VGG / WimerEsnet架构上的索赔。根据我们对象检的调查,我们基于飞行学习率和动量学习者开发了一个随机兰齐齐竞争,这避免了对这些关键的超参数进行昂贵的多重评估的需求,并在预残留的情况下显示出良好的初步结果Cifar的architecure - $ 100 $。
translated by 谷歌翻译