由于物体的异质尺度,肾脏病理图像的全面语义分割具有挑战性。例如,在整个幻灯片图像(WSI)上,肾小球的横截面区域的距离可能比周围毛细管的64倍,这使得以相同尺度上的同一贴片对两个对象进行分割是不切实际的。为了解决这个缩放问题,先前的研究通常已经训练了多个分割网络,以匹配异质组织类型的最佳像素分辨率。这种多网络解决方案是资源密集型的,无法对组织类型之间的空间关系进行建模。在本文中,我们提出了Omni-Seg+网络,这是一种通过单个神经网络实现多对象(六种组织类型)和多尺度(5倍至40倍尺度)的多尺度(5倍至40倍尺度)的动态神经网络。本文的贡献是三个方面的:(1)提出了一种新型的量表感知控制器,以将动态神经网络从单尺度到多尺度推广; (2)引入了伪标签的半监督一致性正规化,以建模未经注释的组织类型的尺度相关性成单个端到端的学习范式; (3)直接将在人类肾脏图像训练的模型中直接应用于小鼠肾脏图像,而无需再培训,就可以证明高尺度感知的概括。通过从三种不同分辨率下从六种组织类型中学习的约150,000个人类病理图像斑块,我们的方法根据人类的视觉评估和图像词的评估(即空间转录组学)获得了卓越的分割性能。官方实施可在https://github.com/ddrrnn123/omni-seg上获得。
translated by 谷歌翻译
关于Giga-Pixel病理学图像的计算机辅助定量分析提供了精密药物的新大道。该创新主要集中在癌症病理学(即,肿瘤分割和表征)上。在非癌症病理学中,可以要求学习算法同时检查更全面的组织类型,作为多标签设置。现有技术通常需要训练多个分段网络,以匹配非均相组织类型的域特异性知识(例如,肾小球簇,肾小球单元,近端管,远端管,梗塞和动脉)。在本文中,我们提出了一种动态单分割网络(OMNI-SEG),该网络(OMNI-SEG)学习使用部分标记的图像(即,仅针对每个训练图像标记一个组织类型)进行多种组织类型进行肾脏病理学。通过从六种组织类型学习〜150,000的Patch-Wise病理图像,与先前的多网络和多头设计相比,所提出的Omni-SEG网络实现了卓越的分割精度和更少的资源消耗。在测试阶段,所提出的方法仅使用“部分标记”训练图像获得“完全标记的”组织分割结果。源代码可在https://github.com/ddrrnn123/omni-seg中获得。
translated by 谷歌翻译
集成多模式数据以改善医学图像分析,最近受到了极大的关注。但是,由于模态差异,如何使用单个模型来处理来自多种模式的数据仍然是一个开放的问题。在本文中,我们提出了一种新的方案,以实现未配对多模式医学图像的更好的像素级分割。与以前采用模式特异性和模态共享模块的以前方法不同,以适应不同方式的外观差异,同时提取共同的语义信息,我们的方法基于具有精心设计的外部注意模块(EAM)的单个变压器来学习在训练阶段,结构化的语义一致性(即语义类表示及其相关性)。在实践中,可以通过分别在模态级别和图像级别实施一致性正则化来逐步实现上述结构化语义一致性。采用了提出的EAM来学习不同尺度表示的语义一致性,并且一旦模型进行了优化,就可以丢弃。因此,在测试阶段,我们只需要为所有模态预测维护一个变压器,这可以很好地平衡模型的易用性和简单性。为了证明所提出的方法的有效性,我们对两个医学图像分割方案进行了实验:(1)心脏结构分割,(2)腹部多器官分割。广泛的结果表明,所提出的方法的表现优于最新方法,甚至通过极有限的训练样本(例如1或3个注释的CT或MRI图像)以一种特定的方式来实现竞争性能。
translated by 谷歌翻译
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19. However, there are still some challenges for developing AI system. 1) Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint. 2) Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume. 3) The emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multi-scale information along different dimension of input feature maps and impose supervision on multiple predictions from different CNN layers. Second, we assign this MDA-CNN as a basic network into a novel dual multi-scale mean teacher network (DM${^2}$T-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multi-scale information. Our DM${^2}$T-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multi-scale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
translated by 谷歌翻译
组织分割是病理检查的主要主机,而手动描述则过于繁重。为了协助这一耗时和主观的手动步骤,研究人员已经设计了自动在病理图像中分割结构的方法。最近,自动化机器和基于深度学习的方法主导了组织分割研究。但是,大多数基于机器和深度学习的方法都是使用大量培训样本进行监督和开发的,其中PixelWise注释很昂贵,有时无法获得。本文通过将端到端的深层混合模型与有限的指标集成以获取准确的语义组织分割,从而引入了一种新颖的无监督学习范式。该约束旨在在计算优化函数期间集中深层混合模型的组成部分。这样做,可以大大减少当前无监督学习方法中常见的多余或空的班级问题。通过对公共和内部数据集的验证,拟议的深度约束高斯网络在组织细分方面取得了更好的性能(Wilcoxon签名级测试)更好的性能(平均骰子得分分别为0.737和0.735),具有改善与其他现有的无监督分割方法相比。此外,该方法与完全监督的U-NET相比,提出的方法具有相似的性能(P值> 0.05)。
translated by 谷歌翻译
Transformer-based models, capable of learning better global dependencies, have recently demonstrated exceptional representation learning capabilities in computer vision and medical image analysis. Transformer reformats the image into separate patches and realize global communication via the self-attention mechanism. However, positional information between patches is hard to preserve in such 1D sequences, and loss of it can lead to sub-optimal performance when dealing with large amounts of heterogeneous tissues of various sizes in 3D medical image segmentation. Additionally, current methods are not robust and efficient for heavy-duty medical segmentation tasks such as predicting a large number of tissue classes or modeling globally inter-connected tissues structures. Inspired by the nested hierarchical structures in vision transformer, we proposed a novel 3D medical image segmentation method (UNesT), employing a simplified and faster-converging transformer encoder design that achieves local communication among spatially adjacent patch sequences by aggregating them hierarchically. We extensively validate our method on multiple challenging datasets, consisting anatomies of 133 structures in brain, 14 organs in abdomen, 4 hierarchical components in kidney, and inter-connected kidney tumors). We show that UNesT consistently achieves state-of-the-art performance and evaluate its generalizability and data efficiency. Particularly, the model achieves whole brain segmentation task complete ROI with 133 tissue classes in single network, outperforms prior state-of-the-art method SLANT27 ensembled with 27 network tiles, our model performance increases the mean DSC score of the publicly available Colin and CANDI dataset from 0.7264 to 0.7444 and from 0.6968 to 0.7025, respectively.
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
自动核细胞分割和分类在数字病理学中起着至关重要的作用。但是,以前的作品主要基于具有有限的多样性和小尺寸的数据构建,使得在实际下游任务中的结果可疑或误导。在本文中,我们的目标是建立一种可靠且强大的方法,能够处理“临床野生”中的数据。具体地,我们研究和设计一种同时检测,分段和分类来自血红素和曙红(H&E)染色的组织病理学数据的新方法,并使用最近的最大数据集评估我们的方法:Pannuke。我们以新颖的语义关键点估计问题解决每个核的检测和分类,以确定每个核的中心点。接下来,使用动态实例分段获得核心点的相应类别 - 不可止液掩模。通过解耦两个同步具有挑战性的任务,我们的方法可以从类别感知的检测和类别不可知的细分中受益,从而导致显着的性能提升。我们展示了我们提出的核细胞分割和分类方法的卓越性能,跨越19种不同的组织类型,提供了新的基准结果。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
光学相干断层扫描(OCT)有助于眼科医生评估黄斑水肿,流体的积累以及微观分辨率的病变。视网膜流体的定量对于OCT引导的治疗管理是必需的,这取决于精确的图像分割步骤。由于对视网膜流体的手动分析是一项耗时,主观和容易出错的任务,因此对快速和健壮的自动解决方案的需求增加了。在这项研究中,提出了一种名为Retifluidnet的新型卷积神经结构,用于多级视网膜流体分割。该模型受益于层次表示使用新的自适应双重注意(SDA)模块的纹理,上下文和边缘特征的学习,多个基于自适应的Skip Connections(SASC)以及一种新颖的多尺度深度自我监督学习(DSL)方案。拟议的SDA模块中的注意机制使该模型能够自动提取不同级别的变形感知表示,并且引入的SASC路径进一步考虑了空间通道相互依存,以串联编码器和解码器单元,从而提高了表示能力。还使用包含加权版本的骰子重叠和基于边缘的连接损失的联合损失函数进行了优化的retifluidnet,其中将多尺度局部损失的几个分层阶段集成到优化过程中。该模型根据三个公开可用数据集进行验证:润饰,Optima和Duke,并与几个基线进行了比较。数据集的实验结果证明了在视网膜OCT分割中提出的模型的有效性,并揭示了建议的方法比现有的最新流体分割算法更有效,以适应各种图像扫描仪器记录的视网膜OCT扫描。
translated by 谷歌翻译
自动图像分割技术对于视觉分析至关重要。自动编码器体系结构在各种图像分割任务中具有令人满意的性能。但是,基于卷积神经网络(CNN)的自动编码器似乎在提高语义分割的准确性方面遇到了瓶颈。增加前景和背景之间的类间距离是分割网络的固有特征。但是,分割网络过于关注前景和背景之间的主要视觉差异,而忽略了详细的边缘信息,从而导致边缘分割的准确性降低。在本文中,我们提出了一个基于多任务学习的轻量级端到端细分框架,称为Edge Coasity AutoCododer Network(EAA-NET),以提高边缘细分能力。我们的方法不仅利用分割网络来获得类间特征,而且还采用重建网络来提取前景中的类内特征。我们进一步设计了一个阶层和类间特征融合模块-I2融合模块。 I2融合模块用于合并课内和类间特征,并使用软注意机制去除无效的背景信息。实验结果表明,我们的方法在医疗图像分割任务中的表现良好。 EAA-NET易于实现,并且计算成本较小。
translated by 谷歌翻译
The lack of efficient segmentation methods and fully-labeled datasets limits the comprehensive assessment of optical coherence tomography angiography (OCTA) microstructures like retinal vessel network (RVN) and foveal avascular zone (FAZ), which are of great value in ophthalmic and systematic diseases evaluation. Here, we introduce an innovative OCTA microstructure segmentation network (OMSN) by combining an encoder-decoder-based architecture with multi-scale skip connections and the split-attention-based residual network ResNeSt, paying specific attention to OCTA microstructural features while facilitating better model convergence and feature representations. The proposed OMSN achieves excellent single/multi-task performances for RVN or/and FAZ segmentation. Especially, the evaluation metrics on multi-task models outperform single-task models on the same dataset. On this basis, a fully annotated retinal OCTA segmentation (FAROS) dataset is constructed semi-automatically, filling the vacancy of a pixel-level fully-labeled OCTA dataset. OMSN multi-task segmentation model retrained with FAROS further certifies its outstanding accuracy for simultaneous RVN and FAZ segmentation.
translated by 谷歌翻译
在本文中,我们提出了一个新型的相互一致性网络(MC-NET+),以有效利用未标记的数据进行半监督的医学图像分割。 MC-NET+模型的动机是通过观察到的,即经过有限注释训练的深模型很容易输出不确定的,易于分类的预测,例如模棱两可的区域(例如,粘合边缘或薄分支)进行医学图像分割。利用这些具有挑战性的样品可以使半监督分割模型训练更有效。因此,我们提出的MC-NET+模型由两个新设计组成。首先,该模型包含一个共享的编码器和多个略有不同的解码器(即使用不同的上采样策略)。计算多个解码器输出的统计差异以表示模型的不确定性,这表明未标记的硬区域。其次,我们在一个解码器的概率输出和其他解码器的软伪标签之间应用了一种新颖的相互一致性约束。通过这种方式,我们最大程度地减少了训练过程中多个输出(即模型不确定性)的差异,并迫使模型在此类具有挑战性的区域中产生不变的结果,旨在使模型训练正规化。我们将MC-NET+模型的细分结果与三个公共医疗数据集中的五种最先进的半监督方法进行了比较。具有两个标准半监督设置的扩展实验证明了我们模型的优越性能,而不是其他方法,这为半监督医学图像分割设定了新的最新技术。我们的代码将在https://github.com/ycwu1997/mc-net上公开发布。
translated by 谷歌翻译
自动检测视网膜结构,例如视网膜血管(RV),凹起的血管区(FAZ)和视网膜血管连接(RVJ),对于了解眼睛的疾病和临床决策非常重要。在本文中,我们提出了一种新型的基于投票的自适应特征融合多任务网络(VAFF-NET),用于在光学相干性层析成像(OCTA)中对RV,FAZ和RVJ进行联合分割,检测和分类。提出了一个特定于任务的投票门模块,以适应并融合两个级别的特定任务的不同功能:来自单个编码器的不同空间位置的特征,以及来自多个编码器的功能。特别是,由于八八座图像中微脉管系统的复杂性使视网膜血管连接连接到分叉/跨越具有挑战性的任务的同时定位和分类,因此我们通过结合热图回归和网格分类来专门设计任务头。我们利用来自各种视网膜层的三个不同的\ textit {en face}血管造影,而不是遵循仅使用单个\ textit {en face}的现有方法。为了促进进一步的研究,已经发布了这些数据集的部分数据集,并已发布了公共访问:https://github.com/imed-lab/vaff-net。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
Data scarcity is common in deep learning models for medical image segmentation. Previous works proposed multi-dataset learning, either simultaneously or via transfer learning to expand training sets. However, medical image datasets have diverse-sized images and features, and developing a model simultaneously for multiple datasets is challenging. This work proposes Fabric Image Representation Encoding Network (FIRENet), a universal architecture for simultaneous multi-dataset segmentation and transfer learning involving arbitrary numbers of dataset(s). To handle different-sized image and feature, a 3D fabric module is used to encapsulate many multi-scale sub-architectures. An optimal combination of these sub-architectures can be implicitly learnt to best suit the target dataset(s). For diverse-scale feature extraction, a 3D extension of atrous spatial pyramid pooling (ASPP3D) is used in each fabric node for a fine-grained coverage of rich-scale image features. In the first experiment, FIRENet performed 3D universal bone segmentation of multiple musculoskeletal datasets of the human knee, shoulder and hip joints and exhibited excellent simultaneous multi-dataset segmentation performance. When tested for transfer learning, FIRENet further exhibited excellent single dataset performance (when pre-training on a prostate dataset), as well as significantly improved universal bone segmentation performance. The following experiment involves the simultaneous segmentation of the 10 Medical Segmentation Decathlon (MSD) challenge datasets. FIRENet demonstrated good multi-dataset segmentation results and inter-dataset adaptability of highly diverse image sizes. In both experiments, FIRENet's streamlined multi-dataset learning with one unified network that requires no hyper-parameter tuning.
translated by 谷歌翻译
深度学习模型,例如监督编码器样式网络,在医学图像细分中表现出令人鼓舞的性能,但具有高标签成本。我们提出了一个半监督语义分割框架Trisegnet。它在有限的标记数据和大量未标记的数据上使用Triple-View功能学习。 Triple-View架构由三个像素级分类器和一个低水平的共享体重学习模块组成。该模型首先用标记的数据初始化。标签处理,包括数据扰动,置信标签投票和注释的不自信标签检测,使该模型能够同时训练标签和未标记的数据。每个模型的信心通过功能学习的其他两个视图得到了提高。重复此过程,直到每个模型达到与对应物相同的置信度。此策略使得对通用医疗图像数据集的三次学习学习。定制重叠和基于边界的损失功能是根据培训的不同阶段量身定制的。分割结果将在四个公开可用的基准数据集上进行评估,包括超声,CT,MRI和组织学图像。重复的实验证明了拟议网络与其他半监督算法相比,在一系列评估措施中相比。
translated by 谷歌翻译
医学图像分割或计算voxelwise语义面具是一个基本又具有挑战性的任务,用于计算体素级语义面具。为了提高编码器 - 解码器神经网络在大型临床队列中执行这项任务的能力,对比学习提供了稳定模型初始化和增强编码器而无需标签的机会。然而,多个目标对象(具有不同的语义含义)可能存在于单个图像中,这使得适应传统的对比学习方法从普遍的“图像级分类”到“像素级分段”中的问题。在本文中,我们提出了一种简单的语义感知对比学习方法,利用注意掩模来推进多对象语义分割。简而言之,我们将不同的语义对象嵌入不同的群集而不是传统的图像级嵌入。我们在与内部数据和Miccai挑战2015 BTCV数据集中的多器官医学图像分段任务中评估我们提出的方法。与目前的最先进的培训策略相比,我们拟议的管道分别产生了两种医学图像分割队列的骰子评分的大幅提高5.53%和6.09%(P值<0.01)。通过Pascal VOC 2012 DataSet进一步评估了所提出的方法的性能,并在MiOU(P值<0.01)上实现了2.75%的大幅提高。
translated by 谷歌翻译