多机器人导航是一项具有挑战性的任务,其中必须在动态环境中同时协调多个机器人。我们应用深入的加固学习(DRL)来学习分散的端到端策略,该政策将原始传感器数据映射到代理的命令速度。为了使政策概括,培训是在不同的环境和场景中进行的。在常见的多机器人场景中测试和评估了学识渊博的政策,例如切换一个地方,交叉路口和瓶颈情况。此策略使代理可以从死端恢复并浏览复杂的环境。
translated by 谷歌翻译
为多个机器人制定安全,稳定和高效的避免障碍政策是具有挑战性的。大多数现有研究要么使用集中控制,要么需要与其他机器人进行通信。在本文中,我们提出了一种基于对数地图的新型对数深度强化学习方法,以避免复杂且无通信的多机器人方案。特别是,我们的方法将激光信息转换为对数图。为了提高训练速度和概括性能,我们的政策将在两个专门设计的多机器人方案中进行培训。与其他方法相比,对数图可以更准确地表示障碍,并提高避免障碍的成功率。我们最终在各种模拟和现实情况下评估了我们的方法。结果表明,我们的方法为复杂的多机器人场景和行人场景中的机器人提供了一种更稳定,更有效的导航解决方案。视频可在https://youtu.be/r0esuxe6mze上找到。
translated by 谷歌翻译
在本文中,我们研究了DRL算法在本地导航问题的应用,其中机器人仅配备有限​​量距离的外部感受传感器(例如LIDAR),在未知和混乱的工作区中朝着目标位置移动。基于DRL的碰撞避免政策具有一些优势,但是一旦他们学习合适的动作的能力仅限于传感器范围,它们就非常容易受到本地最小值的影响。由于大多数机器人在非结构化环境中执行任务,因此寻求能够避免本地最小值的广义本地导航政策,尤其是在未经训练的情况下,这是非常兴趣的。为此,我们提出了一种新颖的奖励功能,该功能结合了在训练阶段获得的地图信息,从而提高了代理商故意最佳行动方案的能力。另外,我们使用SAC算法来训练我们的ANN,这表明在最先进的文献中比其他人更有效。一组SIM到SIM和SIM到现实的实验表明,我们提出的奖励与SAC相结合的表现优于比较局部最小值和避免碰撞的方法。
translated by 谷歌翻译
分散的多代理导航的代理缺乏世界知识,无法可靠地制定安全和(接近)最佳计划。他们将决定基于邻居的可观察状态,这隐藏了邻居的导航意图。我们提出了通过机构间沟通的增强分散导航,以提高其绩效和援助代理,以做出合理的导航决策。在这方面,我们提出了一种新颖的增强学习方法,用于使用选择性间隔沟通来避免多代理碰撞。我们的网络学会决定“何时”并与“谁”交流,以端到端的方式索取其他信息。我们将沟通选择作为链接预测问题,在该问题中,如果可以观察到的信息,网络可以预测是否需要通信。传达的信息增加了观察到的邻居信息以选择合适的导航计划。随着机器人的邻居数量的变化,我们使用多头自发项机制来编码邻居信息并创建固定长度的观察向量。我们验证我们提出的方法在挑战模拟基准中实现了多个机器人之间的安全有效导航。通过学习的通信,我们的网络的性能比在各种指标(例如到目标和碰撞频率)中的现有分散方法的表现要好得多。此外,我们展示了网络有效地学会在高复杂性情况下进行必要时进行交流。
translated by 谷歌翻译
在狭窄的空间中,基于传统层次自治系统的运动计划可能会导致映射,定位和控制噪声引起碰撞。此外,当无映射时,它将被禁用。为了解决这些问题,我们利用深厚的加强学习,可以证明可以有效地进行自我决策,从而在狭窄的空间中自探索而无需地图,同时避免碰撞。具体而言,基于我们的Ackermann-Steering矩形Zebrat机器人及其凉亭模拟器,我们建议矩形安全区域来表示状态并检测矩形形状的机器人的碰撞,以及无需精心制作的奖励功能,不需要增强功能。目的地信息。然后,我们在模拟的狭窄轨道中基准了五种增强学习算法,包括DDPG,DQN,SAC,PPO和PPO-DISCRETE。经过训练,良好的DDPG和DQN型号可以转移到三个全新的模拟轨道上,然后转移到三个现实世界中。
translated by 谷歌翻译
我们研究了流行的集中训练和分散执行(CTDE)范式中的多机器人发臭导航问题。当每个机器人考虑其路径而不明确地与其他机器人明确分享观察时,这一问题挑战了,可能导致深度加强学习(DRL)中的非静止问题。典型的CTDE算法将联合动作值函数分解为个别函数,以支持合作并实现分散的执行。这种分解涉及限制(例如,单调性),其限制在个体中的新行为的出现,因为从联合动作值开始训练。相比之下,我们为CTDE提出了一种新颖的架构,该架构使用集中式状态值网络来计算联合状态值,该值用于在代理的基于值的更新中注入全局状态信息。因此,考虑到环境的整体状态,每个模型计算其权重的梯度更新。我们的想法遵循Dueling Networks作为联合状态值的单独估计的独立估计,具有提高采样效率的优点,同时提供每个机器人信息,无论全局状态是否为(或不是)有价值的。具有2 4和8个机器人的机器人导航任务的实验,确认了我们对先前CTDE方法的方法的卓越性能(例如,VDN,QMIX)。
translated by 谷歌翻译
深度强化学习(DRL)的最新进步通过允许自动控制器设计促进了机器人技术。自动控制器设计是设计群体机器人系统的关键方法,与单个机器人系统相比,它需要更复杂的控制器来领导所需的集体行为。尽管基于DRL的控制器设计方法显示出其有效性,但对中央培训服务器的依赖是在机器人服务器通信不稳定或有限的现实环境中的关键问题。我们提出了一种新型联邦学习(FL)的DRL培训策略(FLDDPG),以用于群体机器人应用。通过在有限的通信带宽方案下与基线策略进行比较,可以证明,FLDDPG方法导致更高的鲁棒性和泛化能力进入不同的环境和真正的机器人,而基线策略则遭受了通信带宽的限制。该结果表明,所提出的方法可以使在通信带宽有限的环境中运行的群体机器人系统受益,例如在高辐射,水下或地下环境中。
translated by 谷歌翻译
小型无人驾驶飞机的障碍避免对于未来城市空袭(UAM)和无人机系统(UAS)交通管理(UTM)的安全性至关重要。有许多技术用于实时强大的无人机指导,但其中许多在离散的空域和控制中解决,这将需要额外的路径平滑步骤来为UA提供灵活的命令。为提供无人驾驶飞机的操作安全有效的计算指导,我们探讨了基于近端政策优化(PPO)的深增强学习算法的使用,以指导自主UA到其目的地,同时通过连续控制避免障碍物。所提出的场景状态表示和奖励功能可以将连续状态空间映射到连续控制,以便进行标题角度和速度。为了验证所提出的学习框架的性能,我们用静态和移动障碍进行了数值实验。详细研究了与环境和安全操作界限的不确定性。结果表明,该拟议的模型可以提供准确且强大的指导,并解决了99%以上的成功率的冲突。
translated by 谷歌翻译
援助机器人在物流和人类援助等各个行业中广泛关注。在拥挤的环境(例如机场或火车站)携带重量或货物的指导或关注人类的任务仍然是一个空旷的问题。在这些用例中,机器人不仅需要与人类智能互动,而且需要在人群中安全地进行互动。因此,尤其是高度动态的环境,由于人类的挥发性行为模式和不可预测的运动,构成了巨大的挑战。在本文中,我们提出了一种基于深入的学习媒介,用于在拥挤的环境中进行人类引导和遵守任务。因此,我们合并了语义信息,以向代理提供高级信息,例如人类,安全模型和班级类型的社会状态。我们在没有语义信息的情况下根据基准方法评估了我们的建议方法,并证明了导航的安全性和鲁棒性增强。此外,我们证明了代理可以学会将其行为适应人类,从而大大改善了人类机器人的相互作用。
translated by 谷歌翻译
本文提出了一种基于强化学习的导航方法,在其中我们将占用观测定义为运动原始启发式评估,而不是使用原始传感器数据。我们的方法可以将多传感器融合生成的占用数据快速映射到3D工作区中的轨迹值中。计算有效的轨迹评估允许对动作空间进行密集采样。我们利用不同数据结构中的占用观测来分析其对培训过程和导航性能的影响。我们在基于物理的仿真环境(包括静态和动态障碍)中对两个不同机器人进行训练和测试。我们通过最先进方法的其他常规数据结构对我们的占用表示进行基准测试。在动态环境中,通过物理机器人成功验证了训练有素的导航政策。结果表明,与其他占用表示相比,我们的方法不仅减少了所需的训练时间,还可以改善导航性能。我们的工作和所有相关信息的开源实现可从\ url {https://github.com/river-lab/tentabot}获得。
translated by 谷歌翻译
尽管数十年的努力,但在真正的情景中的机器人导航具有波动性,不确定性,复杂性和歧义(vuca短暂),仍然是一个具有挑战性的话题。受到中枢神经系统(CNS)的启发,我们提出了一个在Vuca环境中的自主导航的分层多专家学习框架。通过考虑目标位置,路径成本和安全水平的启发式探索机制,上层执行同时映射探索和路线规划,以避免陷入盲巷,类似于CNS中的大脑。使用本地自适应模型融合多种差异策略,下层追求碰撞 - 避免和直接策略之间的平衡,作为CNS中的小脑。我们在多个平台上进行仿真和实际实验,包括腿部和轮式机器人。实验结果表明我们的算法在任务成就,时间效率和安全性方面优于现有方法。
translated by 谷歌翻译
我们提出了一种新的方法,以改善基于深入强化学习(DRL)的室外机器人导航系统的性能。大多数现有的DRL方法基于精心设计的密集奖励功能,这些功能可以学习环境中的有效行为。我们仅通过稀疏的奖励(易于设计)来解决这个问题,并提出了一种新颖的自适应重尾增强算法,用于户外导航,称为Htron。我们的主要思想是利用重尾政策参数化,这些参数隐含在稀疏的奖励环境中引起探索。我们在三种不同的室外场景中评估了针对钢琴,PPO和TRPO算法的htron的性能:进球,避免障碍和地形导航不均匀。我们平均观察到成功率的平均增加了34.41%,与其他方法相比,与其他方法获得的导航政策相比,为达到目标的平均时间步骤下降了15.15%,高程成本下降了24.9%。此外,我们证明我们的算法可以直接转移到Clearpath Husky机器人中,以在现实情况下进行户外地形导航。
translated by 谷歌翻译
通过直接将感知输入映射到机器人控制命令中,深入的强化学习(DRL)算法已被证明在机器人导航中有效,尤其是在未知环境中。但是,大多数现有方法忽略导航中的局部最小问题,从而无法处理复杂的未知环境。在本文中,我们提出了第一个基于DRL的导航方法,该方法由具有连续动作空间,自适应向前模拟时间(AFST)的SMDP建模,以克服此问题。具体而言,我们通过修改其GAE来更好地估计SMDP中的策略梯度,改善了指定SMDP问题的分布式近端策略优化(DPPO)算法。我们在模拟器和现实世界中评估了我们的方法。
translated by 谷歌翻译
本文研究了如何改善接受深入增强学习训练的导航剂的概括性能和学习速度(DRL)。尽管DRL在无机MAP导航中表现出巨大的潜力,但在训练场景中表现良好的DRL代理在不熟悉的情况下经常表现不佳。在这项工作中,我们建议LIDAR读数的表示是代理商效果退化的关键因素,并提出了一种强大的输入预处理(IP)方法来解决此问题。由于这种方法使用适应性的参数倒数函数来预处理激光雷达读数,因此我们将此方法称为IPAPREC及其归一化版本为IPAPRECN。 IPAPREC/IPAPRECN可以突出显示重要的短距离值,并压缩激光扫描中较重要的长距离值的范围,该值很好地解决了由激光扫描的常规表示引起的问题。通过广泛的模拟和现实世界实验来验证它们的高性能。结果表明,与常规方法相比,我们的方法可以大大改善导航剂的概括性能,并大大减少训练时间。
translated by 谷歌翻译
这项工作调查了基于课程学习(CL)对代理商的绩效的影响。特别是,我们专注于机器人毛美导航的安全方面,比较标准端到端(E2E)培训策略。为此,我们提出了一种方法,即利用学习(tol)和微调在基于团结的模拟中的微调,以及Robotnik Kairos作为机器人代理。对于公平的比较,我们的评估考虑了对每个学习方法的同等计算需求(即,相同的相互作用和环境的难度数),并确认我们基于CL的方法使用TOL优于E2E方法。特别是,我们提高了培训的政策的平均成功率和安全,导致看不见的测试方案中的碰撞减少了10%。为了进一步确认这些结果,我们采用正式的验证工具来量化加强学习政策的正确行为数量超过所需规范。
translated by 谷歌翻译
Development of navigation algorithms is essential for the successful deployment of robots in rapidly changing hazardous environments for which prior knowledge of configuration is often limited or unavailable. Use of traditional path-planning algorithms, which are based on localization and require detailed obstacle maps with goal locations, is not possible. In this regard, vision-based algorithms hold great promise, as visual information can be readily acquired by a robot's onboard sensors and provides a much richer source of information from which deep neural networks can extract complex patterns. Deep reinforcement learning has been used to achieve vision-based robot navigation. However, the efficacy of these algorithms in environments with dynamic obstacles and high variation in the configuration space has not been thoroughly investigated. In this paper, we employ a deep Dyna-Q learning algorithm for room evacuation and obstacle avoidance in partially observable environments based on low-resolution raw image data from an onboard camera. We explore the performance of a robotic agent in environments containing no obstacles, convex obstacles, and concave obstacles, both static and dynamic. Obstacles and the exit are initialized in random positions at the start of each episode of reinforcement learning. Overall, we show that our algorithm and training approach can generalize learning for collision-free evacuation of environments with complex obstacle configurations. It is evident that the agent can navigate to a goal location while avoiding multiple static and dynamic obstacles, and can escape from a concave obstacle while searching for and navigating to the exit.
translated by 谷歌翻译
众所周知,很难拥有一个可靠且强大的框架来将多代理深入强化学习算法与实用的多机器人应用联系起来。为了填补这一空白,我们为称为MultiroBolearn1的多机器人系统提出并构建了一个开源框架。该框架构建了统一的模拟和现实应用程序设置。它旨在提供标准的,易于使用的模拟方案,也可以轻松地将其部署到现实世界中的多机器人环境中。此外,该框架为研究人员提供了一个基准系统,以比较不同的强化学习算法的性能。我们使用不同类型的多代理深钢筋学习算法在离散和连续的动作空间中使用不同类型的多代理深钢筋学习算法来证明框架的通用性,可扩展性和能力。
translated by 谷歌翻译
对于大规模的大规模任务,多机器人系统(MRS)可以通过利用每个机器人的不同功能,移动性和功能来有效提高效率。在本文中,我们关注大规模平面区域的多机器人覆盖路径计划(MCPP)问题,在机器人资源有限的环境中具有随机的动态干扰。我们介绍了一个工人站MR,由多名工人组成,实际上有有限的实际工作资源,一个站点提供了足够的资源来补充资源。我们旨在通过将其作为完全合作的多代理增强学习问题来解决工人站MRS的MCPP问题。然后,我们提出了一种端到端分散的在线计划方法,该方法同时解决了工人的覆盖范围计划,并为车站的集合计划。我们的方法设法减少随机动态干扰对计划的影响,而机器人可以避免与它们发生冲突。我们进行仿真和真实的机器人实验,比较结果表明,我们的方法在解决任务完成时间指标的MCPP问题方面具有竞争性能。
translated by 谷歌翻译
In this paper, we consider the problem of path finding for a set of homogeneous and autonomous agents navigating a previously unknown stochastic environment. In our problem setting, each agent attempts to maximize a given utility function while respecting safety properties. Our solution is based on ideas from evolutionary game theory, namely replicating policies that perform well and diminishing ones that do not. We do a comprehensive comparison with related multiagent planning methods, and show that our technique beats state of the art RL algorithms in minimizing path length by nearly 30% in large spaces. We show that our algorithm is computationally faster than deep RL methods by at least an order of magnitude. We also show that it scales better with an increase in the number of agents as compared to other methods, path planning methods in particular. Lastly, we empirically prove that the policies that we learn are evolutionarily stable and thus impervious to invasion by any other policy.
translated by 谷歌翻译
我们为仓库环境中的移动机器人提供基于新颖的强化学习(RL)任务分配和分散的导航算法。我们的方法是针对各种机器人执行各种接送和交付任务的场景而设计的。我们考虑了联合分散任务分配和导航的问题,并提出了解决该问题的两层方法。在更高级别,我们通过根据马尔可夫决策过程制定任务并选择适当的奖励来最大程度地减少总旅行延迟(TTD)来解决任务分配。在较低级别,我们使用基于ORCA的分散导航方案,使每个机器人能够独立执行这些任务,并避免与其他机器人和动态障碍物发生碰撞。我们通过定义较高级别的奖励作为低级导航算法的反馈来结合这些下层和上层。我们在复杂的仓库布局中进行了广泛的评估,并具有大量代理商,并根据近视拾取距离距离最小化和基于遗憾的任务选择,突出了对最先进算法的好处。我们观察到任务完成时间的改善高达14%,并且在计算机器人的无碰撞轨迹方面提高了40%。
translated by 谷歌翻译