我们提出了四足球运动的多功能非线性模型预测控制(NMPC)公式。我们的公式根据简化的动力学模型共同优化了基本轨迹和一组立足点。我们利用二阶灵敏度分析和稀疏的高斯 - 纽顿(SGN)方法来解决所得的最佳控制问题。我们进一步描述了通过模拟和硬件实验验证我们的方法的持续努力。最后,我们将运动框架扩展到处理构成差距交叉,踏入石头的运动和多机器人控制的具有挑战性的任务。
translated by 谷歌翻译
This paper presents a state-of-the-art optimal controller for quadruped locomotion. The robot dynamics is represented using a single rigid body (SRB) model. A linear time-varying model predictive controller (LTV MPC) is proposed by using linearization schemes. Simulation results show that the LTV MPC can execute various gaits, such as trot and crawl, and is capable of tracking desired reference trajectories even under unknown external disturbances. The LTV MPC is implemented as a quadratic program using qpOASES through the CasADi interface at 50 Hz. The proposed MPC can reach up to 1 m/s top speed with an acceleration of 0.5 m/s2 executing a trot gait. The implementation is available at https:// github.com/AndrewZheng-1011/Quad_ConvexMPC
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
在这封信中,我们提出了一种多功能的层次离线计划算法,以及用于敏捷四足球运动的在线控制管道。我们的离线规划师在优化降低阶模型和全身轨迹优化的质心动力学之间进行交替,以实现动力学共识。我们使用等椭圆形参数化的新型动量惰性质地优化能够通过``惯性塑造''来产生高度的杂技运动。我们的全身优化方法可显着改善基于标准DDP的方法的质量从质心层中利用反馈。对于在线控制,我们通过完整的质心动力学的线性转换开发了一种新颖的凸模型预测控制方案。我们的控制器可以在单个优化中有效地对接触力和关节加速度有效地优化,从而实现更直接的加速度,从而实现更直接的优化与现有四倍体MPC控制器相比,跟踪动量丰富的动作。我们在四个不同的动态操作中证明了我们的轨迹计划者的能力和通用性。然后,我们在MIT MINI Cheetah平台上展示了​​一个硬件实验,以证明整个计划的性能和整个计划的性能和性能扭曲的控制管道跳动。
translated by 谷歌翻译
The ability to generate dynamic walking in real-time for bipedal robots with input constraints and underactuation has the potential to enable locomotion in dynamic, complex and unstructured environments. Yet, the high-dimensional nature of bipedal robots has limited the use of full-order rigid body dynamics to gaits which are synthesized offline and then tracked online. In this work we develop an online nonlinear model predictive control approach that leverages the full-order dynamics to realize diverse walking behaviors. Additionally, this approach can be coupled with gaits synthesized offline via a desired reference to enable a shorter prediction horizon and rapid online re-planning, bridging the gap between online reactive control and offline gait planning. We demonstrate the proposed method, both with and without an offline gait, on the planar robot AMBER-3M in simulation and on hardware.
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
在腿部机器人的机车上,执行高度敏捷的动态动作,例如跳跃或跑步的踏板乐队,这仍然是一个挑战性的问题。本文提出了一个框架,该框架结合了轨迹优化和模型预测控制,以在踏脚石上执行强大的连续跳跃。在我们的方法中,我们首先利用基于机器人的全非线性动力学的轨迹优化来生成各种跳跃距离的周期性跳跃轨迹。然后,基于模型预测控制的跳跃控制器设计用于实现平滑的跳跃过渡,从而使机器人能够在步进石上实现连续跳跃。得益于将MPC作为实时反馈控制器的合并,该提议的框架也得到了验证,可以对机器人动力学上的高度扰动和模型不确定性具有不均匀的平台。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
本文提出了一个模型预测控制(MPC)框架,以实现MIT类人体上的动态步态。除了适应脚步位置和在线时机外,该建议的方法还可以理解高度,接触扳手,躯干旋转,运动学限制和谈判不均匀的地形。具体而言,线性MPC(LMPC)通过与当前的脚步位置进行线性线性线性线性来优化所需的脚步位置。低级任务空间控制器跟踪从LMPC的预测状态和控制轨迹,以利用全身动力学。最后,采用自适应步态频率方案来修改步进频率并增强步行控制器的鲁棒性。 LMPC和任务空间控制都可以作为二次程序(QP)有效地求解,因此适用于实时应用程序。模拟研究中,MIT类人动物遍历波场并从冲动性干扰中恢复为拟议方法恢复。
translated by 谷歌翻译
模型预测控制(MPC)方法被广泛用于机器人技术,因为它们允许在机器人移动时计算更新的轨迹。他们通常需要启发式参考,以进行跟踪术语和成本功能参数的正确调整,以便获得良好的性能。例如,当腿部机器人必须对环境的干扰(例如,推动后恢复)或以静态不稳定步态跟踪某个目标时,算法的有效性会降解。在这项工作中,我们提出了一个新型基于优化的参考生成器,名为州长,该发电机利用线性倒置的摆模型来计算质量中心的参考轨迹,同时考虑了步态的可能不足(例如,在小跑中)。获得的轨迹用作我们先前工作中提出的非线性MPC成本函数的参考[1]。我们还提出了一个公式,可以保证一定的响应时间达到目​​标,而无需调整成本条款的权重。此外,校正了立足点以将机器人朝目标推动。我们证明了在与Aliengo机器人不同情况下的模拟和实验中,我们的方法的有效性。
translated by 谷歌翻译
本文介绍了一个新颖的自适应频率MPC框架,用于在地形上具有不均匀的垫脚石上的两足球运动。详细说明,我们打算使用此MPC实现双足体周期步态的自适应脚部和步态,以便在不慢下放慢速度的情况下以不连续性穿越地形。我们将这种自适应频率MPC与Kino-Dynamics轨迹优化,以实现最佳步态时期,质量中心(COM)轨迹和脚部位置。我们使用全身控制(WBC)以及自适应频率MPC来跟踪离线优化的最佳轨迹。在数值验证中,我们具有优化的自适应频率MPC框架已显示出比固定频率MPC的优势。所提出的框架可以控制两足动物的机器人,穿过具有扰动的石头高度,宽度和表面形状的不均匀的垫脚石地形,同时保持平均速度为1.5 m/s。
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
具有长飞行阶段的高度敏捷杂技动作需要完美的时机,高精度,以及整个身体运动的协调。为了解决这些挑战,本文提出了一个统一的时序和轨迹优化框架,可用于执行激进的3D跳跃的腿机器人。在我们的方法中,我们首先利用了有效的优化框架,使用简化的刚体动力学来解决机器人身体的接触时间和参考轨迹。然后使用该模块的解决方案基于机器人的全部非线性动力学制定全身轨迹优化。这种组合允许我们有效地优化接触定时,同时保证可以在硬件中实现的跳跃轨迹的准确性。我们在A1机器人模型上验证了所提出的框架,以获得各种3D跳跃任务,如双后跳和双桶分别从2M和0.8米的高海拔滚动。对于不同的3D跳跃动作,还成功地进行了实验验证,例如来自盒子或对角线跳转的桶卷。
translated by 谷歌翻译
以前已经评估过使用轮毂,无人驾驶飞机,立方体,小萨特人等进行空中和地面操纵,感知和侦察的可行性。在所有这些解决方案中,基于气球的系统具有使其极具吸引力的优点,例如,简单的操作机构和持久的操作时间。但是,在基于气球的应用中,有许多障碍要克服,以实现强大的游荡性能。我们试图确定设计和控制挑战,并提出一个新型的机器人平台,该平台允许在火星陨石坑的侦察和感知中应用气球。这项工作简要涵盖了我们建议的驱动和模型预测控制设计框架,用于转向此类气球系统。我们提出了多个无人接地车辆(UGV)的协调伺服,以调节电缆驱动的气球中的张力,并将其连接到未成熟的悬挂有效载荷上。
translated by 谷歌翻译
这项研究介绍了具有刚性接触的机器人系统的全身模型预测控制(MPC),使用在线切换时间优化(STO)的给定接触序列下。我们将机器人动力学用刚性接触视为开关系统,并制定开关系统的最佳控制问题以实现MPC。我们为MPC问题使用有效的解决方案算法,该算法同时优化了切换时间和轨迹。与现有的现有方法不同,目前的有效算法可以在线优化和切换时间。通过在传统的MPC上比较了在线STO的提议的MPC,并通过固定的切换时间,通过数值模拟四倍的机器人的动态跳跃运动。在模拟比较中,提出的MPC成功控制了动态跳跃运动的两倍,这是常规MPC的两倍,这表明所提出的方法扩展了整体MPC的能力。我们进一步在四足机器人单位A1上进行硬件实验,并证明所提出的方法在实际机器人上实现了动态运动。
translated by 谷歌翻译
模型预测控制(MPC)表明了控制诸如腿机器人等复杂系统的巨大成功。然而,在关闭循环时,在每个控制周期解决的有限范围最佳控制问题(OCP)的性能和可行性不再保证。这是由于模型差异,低级控制器,不确定性和传感器噪声的影响。为了解决这些问题,我们提出了一种修改版本,该版本的标准MPC方法用于带有活力的腿运动(弱向不变性)保证。在这种方法中,代替向问题添加(保守)终端约束,我们建议使用投影到在每个控制周期的OCP中的可行性内核中投影的测量状态。此外,我们使用过去的实验数据来找到最佳成本重量,该重量测量性能,约束满足鲁棒性或稳定性(不变性)的组合。这些可解释的成本衡量了稳健性和性能之间的贸易。为此目的,我们使用贝叶斯优化(BO)系统地设计实验,有助于有效地收集数据以了解导致强大性能的成本函数。我们的模拟结果具有不同的现实干扰(即外部推动,未铭出的执行器动态和计算延迟)表明了我们为人形机器人创造了强大的控制器的方法的有效性。
translated by 谷歌翻译
具有单个刚体模型的凸模型预测控制(MPC)在真实的腿部机器人上表现出强烈的性能。但是,凸MPC受其假设的限制,例如旋转角度和预定义的步态,从而限制了潜在溶液的丰富性。我们删除了这些假设,并使用单个刚体模型解决了完整的混合企业非凸编程。我们首先离线收集预处理问题的数据集,然后学习问题解决方案图以快速解决MPC的优化。如果可以找到温暖的启动,则可以接近全球最优性解决离线问题。通过根据初始条件产生各种步态和行为来测试所提出的控制器。硬件测试根据传感器反馈演示了在线步态生成和适应性超过50 Hz。
translated by 谷歌翻译
现代机器人系统具有卓越的移动性和机械技能,使其适合在现实世界场景中使用,其中需要与重物和精确的操纵能力进行互动。例如,具有高有效载荷容量的腿机器人可用于灾害场景,以清除危险物质或携带受伤的人。因此,可以开发能够使复杂机器人能够准确地执行运动和操作任务的规划算法。此外,需要在线适应机制,需要新的未知环境。在这项工作中,我们强加了模型预测控制(MPC)产生的最佳状态输入轨迹满足机器人系统自适应控制中的Lyapunov函数标准。因此,我们将控制Lyapunov函数(CLF)提供的稳定性保证以及MPC在统一的自适应框架中提供的最优性,在机器人与未知对象的交互过程中产生改进的性能。我们验证了携带未建模有效载荷和拉重盒子的四足机器人的仿真和硬件测试中提出的方法。
translated by 谷歌翻译
Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely uninvestigated. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal robot walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., the center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP model. The middle layer of the proposed approach is a walking pattern generator that translates the desired global behaviors into the robot's full-body reference trajectories for all directly actuated degrees of freedom. The lowest layer is an input-output linearizing controller that exponentially tracks those full-body reference trajectories based on the full-order, hybrid, nonlinear robot dynamics. Simulations of planar underactuated bipedal walking on a swaying DRS confirm that the proposed framework ensures the walking stability under different DRS motions and gait types.
translated by 谷歌翻译
本文为两足机器人提供了一个步态控制器,鉴于局部斜率和摩擦锥信息,可以在各个地形上行走高度敏捷。没有这些考虑,不合时宜的影响会导致机器人绊倒,而在姿势脚下的切向反作用力不足会导致滑倒。我们通过以新颖的方式将基于角动量线性倒置的摆(ALIP)和模型预测控制(MPC)脚放置计划者组合来解决这些挑战,该模型由虚拟约束方法执行。该过程始于从Cassie 3D Bipedal机器人的完整动力学中抽象,该机器人的质量动力学中心的精确低维表示,通过角动量参数化。在分段平面地形假设和消除机器人质量中心的角动量的术语中,有关接触点的质心动力学变为线性,并具有四个尺寸。重要的是,我们在MPC公式中以均匀间隔的间隔内包含步骤的动力学,以便可以从逐步到步进机器人的演变上进行现实的工作空间约束。低维MPC控制器的输出通过虚拟约束方法直接在高维Cassie机器人上实现。在实验中,我们验证了机器人控制策略在各种表面上具有不同倾斜和质地的性能。
translated by 谷歌翻译