Transfer learning refers to the transfer of knowledge or information from a relevant source domain to a target domain. However, most existing transfer learning theories and algorithms focus on IID tasks, where the source/target samples are assumed to be independent and identically distributed. Very little effort is devoted to theoretically studying the knowledge transferability on non-IID tasks, e.g., cross-network mining. To bridge the gap, in this paper, we propose rigorous generalization bounds and algorithms for cross-network transfer learning from a source graph to a target graph. The crucial idea is to characterize the cross-network knowledge transferability from the perspective of the Weisfeiler-Lehman graph isomorphism test. To this end, we propose a novel Graph Subtree Discrepancy to measure the graph distribution shift between source and target graphs. Then the generalization error bounds on cross-network transfer learning, including both cross-network node classification and link prediction tasks, can be derived in terms of the source knowledge and the Graph Subtree Discrepancy across domains. This thereby motivates us to propose a generic graph adaptive network (GRADE) to minimize the distribution shift between source and target graphs for cross-network transfer learning. Experimental results verify the effectiveness and efficiency of our GRADE framework on both cross-network node classification and cross-domain recommendation tasks.
translated by 谷歌翻译
从社会或商业平台等工业生态系统连续发出的数据通常表示为由多种节点/边缘类型组成的异质图(HG)。使用称为异质图神经网络(HGNN)的HGS的最先进的图形学习方法用于学习深层上下文信息形式表示。但是,来自工业应用程序的许多HG数据集都遭受节点类型之间的标签失衡。由于没有直接学习使用扎根于不同节点类型的标签的直接方法,因此HGNN仅应用于具有丰富标签的几个节点类型。我们为HGNN提出了一个称为知识转移网络(KTN)的零射击传输学习模块,该模块通过HG中给出的丰富关系信息将知识从标签的源节点类型转移到零标记的节点类型。 KTN源自我们在这项工作中引入的理论关系,在HGNN模型中给出的每个节点类型的不同特征提取器之间。 KTN将6种不同类型的HGNN模型的性能提高了960%,以推断零标记的节点类型,并且在HGS上的18个不同的转移学习任务中,最高的最先进的转移学习基线胜过最高的最高转移学习基线。
translated by 谷歌翻译
转移学习是指知识或信息从相关源任务转移到目标任务。但是,大多数现有作品都假设两个任务都是从固定任务分布中取样的,从而导致在实际场景中从非平稳任务分布中绘制的动态任务的次优性能。为了弥合这一差距,在本文中,我们研究了一种动态任务的更现实和挑战性的转移学习设置,即源和目标任务随着时间的推移不断发展。从理论上讲,我们表明,动态目标任务上的预期错误可以在跨任务之间的源知识和连续分配差异方面紧密界定。这个结果激发了我们提出一个通用的元学习框架L2E,以建模动态任务上的知识传递性。它围绕一个任务引导的元学习问题,其中包括一组元对任务,基于我们能够学习先前的模型初始化,以快速适应最新的目标任务。 L2E享有以下属性:(1)跨动态任务的有效知识传递性; (2)快速适应新目标任务; (3)缓解历史目标任务的灾难性遗忘; (4)合并任何现有的静态转移学习算法的灵活性。各种图像数据集的广泛实验证明了所提出的L2E框架的有效性。
translated by 谷歌翻译
Given a resource-rich source graph and a resource-scarce target graph, how can we effectively transfer knowledge across graphs and ensure a good generalization performance? In many high-impact domains (e.g., brain networks and molecular graphs), collecting and annotating data is prohibitively expensive and time-consuming, which makes domain adaptation an attractive option to alleviate the label scarcity issue. In light of this, the state-of-the-art methods focus on deriving domain-invariant graph representation that minimizes the domain discrepancy. However, it has recently been shown that a small domain discrepancy loss may not always guarantee a good generalization performance, especially in the presence of disparate graph structures and label distribution shifts. In this paper, we present TRANSNET, a generic learning framework for augmenting knowledge transfer across graphs. In particular, we introduce a novel notion named trinity signal that can naturally formulate various graph signals at different granularity (e.g., node attributes, edges, and subgraphs). With that, we further propose a domain unification module together with a trinity-signal mixup scheme to jointly minimize the domain discrepancy and augment the knowledge transfer across graphs. Finally, comprehensive empirical results show that TRANSNET outperforms all existing approaches on seven benchmark datasets by a significant margin.
translated by 谷歌翻译
图形预训练策略一直在图形挖掘社区吸引人们的注意力,因为它们在没有任何标签信息的情况下在参数化图形神经网络(GNN)方面的灵活性。关键思想在于通过预测从输入图中提取的掩蔽图信号来编码有价值的信息。为了平衡各种图形信号的重要性(例如节点,边缘,子图),现有方法主要是通过引入超参数来重新进行图形信号的重要性来进行手工设计的。然而,人类对亚最佳高参数的干预通常会注入额外的偏见,并在下游应用中降低了概括性能。本文从新的角度解决了这些局限性,即为预培训GNN提供课程。我们提出了一个名为Mentorgnn的端到端模型,该模型旨在监督具有不同结构和不同特征空间的图表的GNN的预训练过程。为了理解不同粒度的异质图信号,我们提出了一种课程学习范式,该课程自动重新贴出图形信号,以确保对目标域进行良好的概括。此外,我们通过在预先训练的GNN的概括误差上得出自然且可解释的上限,从而对关系数据(即图形)的域自适应问题(即图形)发出了新的启示。有关大量真实图的广泛实验验证并验证了Mentorgnn的性能。
translated by 谷歌翻译
链接预测是图神经网络(GNN)的重要应用。链接预测的大多数现有GNN基于一维Weisfeiler-Lehman(1-WL)测试。 1-wl-gnn首先通过迭代的相邻节点特征来计算中心,然后通过汇总成对节点表示来获得链接表示。正如先前的作品所指出的那样,这两步过程会导致较低的区分功能,因为自然而然地学习节点级表示而不是链接级别。在本文中,我们研究了一种完全不同的方法,该方法可以基于\ textit {二维WEISFEILER-LEHMAN(2-WL)测试直接获得节点对(链接)表示。 2-WL测试直接使用链接(2个小说)作为消息传递单元而不是节点,因此可以直接获得链接表示。我们理论上分析了2-WL测试的表达能力以区分非晶状体链接,并证明其优越的链接与1-WL相比。基于不同的2-WL变体,我们提出了一系列用于链路预测的新型2-WL-GNN模型。在广泛的现实数据集上进行的实验证明了它们对最先进的基线的竞争性能以及优于普通1-WL-GNN的优势。
translated by 谷歌翻译
图表神经网络(GNN)和消息通过神经网络(MPNNS)被证明是在许多应用中的子图结构中表达的。异构图中的一些应用需要明确的边缘建模,例如子图同样计数和匹配。但是,现有的消息传递机制在理论上并不良好设计。在本文中,我们从特定的边缘到顶点变换开始,利用边缘到顶点双图中的同义性属性。我们证明,搜索原始图中的同构相当于在其双图上搜索。基于该观察,我们提出了通过神经网络(DMPNNS)的双信息以异步方式增强子图同样计数和匹配以及无监督的节点分类。广泛的实验通过在合成和真实异构图中结合节点和边缘表示学习来证明DMPNN的稳健性能。代码可在https://github.com/hkust-knowcomp/dualmessagepass上获得。
translated by 谷歌翻译
在本文中,我们提供了一种使用图形神经网络(GNNS)的理论,用于多节点表示学习(我们有兴趣学习一组多个节点的表示)。我们知道GNN旨在学习单节点表示。当我们想学习涉及多个节点的节点集表示时,先前作品中的常见做法是直接将GNN学习的多节点表示与节点集的关节表示。在本文中,我们显示了这种方法的基本限制,即无法捕获节点集中节点之间的依赖性,并且认为直接聚合各个节点表示不会导致多个节点的有效关节表示。然后,我们注意到,以前的一些成功的工作作品用于多节点表示学习,包括密封,距离编码和ID-GNN,所有使用的节点标记。这些方法根据应用GNN之前的与目标节点集的关系,首先标记图中的节点。然后,在标记的图表中获得的节点表示被聚合到节点集表示中。通过调查其内部机制,我们将这些节点标记技术统一到单个和最基本的形式,即标记技巧。我们证明,通过标记技巧,可以获得足够富有表现力的GNN学习最具表现力的节点集表示,因此原则上可以解决节点集的任何联合学习任务。关于一个重要的双节点表示学习任务,链接预测,验证了我们理论的实验。我们的工作建立了使用GNN在节点集上使用GNN进行联合预测任务的理论基础。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are an effective framework for representation learning of graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector of a node is computed by recursively aggregating and transforming representation vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs to capture different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance. * Equal contribution. † Work partially performed while in Tokyo, visiting Prof. Ken-ichi Kawarabayashi.
translated by 谷歌翻译
变压器架构最近在图表表示学习中引起了人们的注意,因为它自然地克服了图神经网络(GNN)的几个局限性,避免了它们严格的结构电感偏置,而仅通过位置编码来编码图形结构。在这里,我们表明,具有位置编码的变压器生成的节点表示不一定捕获它们之间的结构相似性。为了解决这个问题,我们提出了结构感知的变压器,这是一类简单而灵活的图形变压器,建立在新的自我发项机制的基础上。这一新的自我注意力通过在计算注意力之前提取植根于每个节点的子图表来结合结构信息。我们提出了几种自动生成子图表表示的方法,并从理论上说明结果表示至少与子图表一样表现力。从经验上讲,我们的方法在五个图预测基准上实现了最先进的性能。我们的结构感知框架可以利用任何现有的GNN提取子图表表示,我们表明它系统地改善了相对于基本GNN模型的性能,成功地结合了GNN和变形金刚的优势。我们的代码可在https://github.com/borgwardtlab/sat上找到。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are powerful tools for graph representation learning. Despite their rapid development, GNNs also face some challenges, such as over-fitting, over-smoothing, and non-robustness. Previous works indicate that these problems can be alleviated by random dropping methods, which integrate augmented data into models by randomly masking parts of the input. However, some open problems of random dropping on GNNs remain to be solved. First, it is challenging to find a universal method that are suitable for all cases considering the divergence of different datasets and models. Second, augmented data introduced to GNNs causes the incomplete coverage of parameters and unstable training process. Third, there is no theoretical analysis on the effectiveness of random dropping methods on GNNs. In this paper, we propose a novel random dropping method called DropMessage, which performs dropping operations directly on the propagated messages during the message-passing process. More importantly, we find that DropMessage provides a unified framework for most existing random dropping methods, based on which we give theoretical analysis of their effectiveness. Furthermore, we elaborate the superiority of DropMessage: it stabilizes the training process by reducing sample variance; it keeps information diversity from the perspective of information theory, enabling it become a theoretical upper bound of other methods. To evaluate our proposed method, we conduct experiments that aims for multiple tasks on five public datasets and two industrial datasets with various backbone models. The experimental results show that DropMessage has the advantages of both effectiveness and generalization, and can significantly alleviate the problems mentioned above.
translated by 谷歌翻译
图形神经网络(GNN),图数据上深度神经网络的概括已被广泛用于各个领域,从药物发现到推荐系统。但是,当可用样本很少的情况下,这些应用程序的GNN是有限的。元学习一直是解决机器学习中缺乏样品的重要框架,近年来,研究人员已经开始将元学习应用于GNNS。在这项工作中,我们提供了对涉及GNN的不同元学习方法的综合调查,这些方法在各种图表中显示出使用这两种方法的力量。我们根据提出的架构,共享表示和应用程序分类文献。最后,我们讨论了几个激动人心的未来研究方向和打开问题。
translated by 谷歌翻译
灵感来自深度学习的广泛成功,已经提出了图表神经网络(GNNS)来学习表达节点表示,并在各种图形学习任务中表现出有希望的性能。然而,现有的努力主要集中在提供相对丰富的金色标记节点的传统半监督设置。虽然数据标签是难以忍受的事实令人生畏的事实并且需要强化领域知识,但特别是在考虑图形结构数据的异质性时,它通常是不切实际的。在几次半监督的环境下,大多数现有GNN的性能不可避免地受到过度装备和过天际问题的破坏,在很大程度上由于标记数据的短缺。在本文中,我们提出了一种配备有新型元学习算法的解耦的网络架构来解决这个问题。从本质上讲,我们的框架META-PN通过META学习的标签传播策略在未标记节点上乘坐高质量的伪标签,这有效增强了稀缺标记的数据,同时在培训期间启用大型接受领域。广泛的实验表明,与各种基准数据集上的现有技术相比,我们的方法提供了简单且实质性的性能。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
最近,图形神经网络(GNNS)在各种现实情景中获得了普及。尽管取得了巨大成功,但GNN的建筑设计严重依赖于体力劳动。因此,自动化图形神经网络(Autopmn)引起了研究界的兴趣和关注,近年来显着改善。然而,现有的autopnn工作主要采用隐式方式来模拟并利用图中的链接信息,这对图中的链路预测任务不充分规范化,并限制了自动启动的其他图表任务。在本文中,我们介绍了一个新的Autognn工作,该工作明确地模拟了缩写为autogel的链接信息。以这种方式,AutoGel可以处理链路预测任务并提高Autognns对节点分类和图形分类任务的性能。具体地,AutoGel提出了一种新的搜索空间,包括层内和层间设计中的各种设计尺寸,并采用更强大的可分辨率搜索算法,以进一步提高效率和有效性。基准数据集的实验结果展示了自动池上的优势在几个任务中。
translated by 谷歌翻译
图表学习目的旨在将节点内容与图形结构集成以学习节点/图表示。然而,发现许多现有的图形学习方法在具有高异性级别的数据上不能很好地工作,这是不同类标签之间很大比例的边缘。解决这个问题的最新努力集中在改善消息传递机制上。但是,尚不清楚异质性是否确实会损害图神经网络(GNNS)的性能。关键是要展现一个节点与其直接邻居之间的关系,例如它们是异性还是同质性?从这个角度来看,我们在这里研究了杂质表示在披露连接节点之间的关系之前/之后的杂音表示的作用。特别是,我们提出了一个端到端框架,该框架既学习边缘的类型(即异性/同质性),并利用边缘类型的信息来提高图形神经网络的表现力。我们以两种不同的方式实施此框架。具体而言,为了避免通过异质边缘传递的消息,我们可以通过删除边缘分类器鉴定的异性边缘来优化图形结构。另外,可以利用有关异性邻居的存在的信息进行特征学习,因此,设计了一种混合消息传递方法来汇总同质性邻居,并根据边缘分类使异性邻居多样化。广泛的实验表明,在整个同质级别的多个数据集上,通过在多个数据集上提出的框架对GNN的绩效提高了显着提高。
translated by 谷歌翻译
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质的假设,并设计基于相似性的启发式方法或表示学习方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,并且两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能是不同的,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示形式,每个矢量捕获一个因子上的节点的潜在表示,这铺平了一种方法来模拟异性图中的链接形成,从而导致更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,该问题是在异性图上进行链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来学习以促进链接预测来学习解开的表示形式。在13个现实世界数据集上进行的广泛实验证明了Disenlink对异性恋和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
translated by 谷歌翻译
数据增强已广泛用于图像数据和语言数据,但仍然探索图形神经网络(GNN)。现有方法专注于从全局视角增强图表数据,并大大属于两个类型:具有特征噪声注入的结构操纵和对抗训练。但是,最近的图表数据增强方法忽略了GNNS“消息传递机制的本地信息的重要性。在这项工作中,我们介绍了本地增强,这通过其子图结构增强了节点表示的局部。具体而言,我们将数据增强模拟为特征生成过程。鉴于节点的功能,我们的本地增强方法了解其邻居功能的条件分布,并生成更多邻居功能,以提高下游任务的性能。基于本地增强,我们进一步设计了一个新颖的框架:La-GNN,可以以即插即用的方式应用于任何GNN模型。广泛的实验和分析表明,局部增强一致地对各种基准的各种GNN架构始终如一地产生性能改进。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been predominant for graph learning tasks; however, recent studies showed that a well-known graph algorithm, Label Propagation (LP), combined with a shallow neural network can achieve comparable performance to GNNs in semi-supervised node classification on graphs with high homophily. In this paper, we show that this approach falls short on graphs with low homophily, where nodes often connect to the nodes of the opposite classes. To overcome this, we carefully design a combination of a base predictor with LP algorithm that enjoys a closed-form solution as well as convergence guarantees. Our algorithm first learns the class compatibility matrix and then aggregates label predictions using LP algorithm weighted by class compatibilities. On a wide variety of benchmarks, we show that our approach achieves the leading performance on graphs with various levels of homophily. Meanwhile, it has orders of magnitude fewer parameters and requires less execution time. Empirical evaluations demonstrate that simple adaptations of LP can be competitive in semi-supervised node classification in both homophily and heterophily regimes.
translated by 谷歌翻译
本文研究了跨网络节点分类的问题,以克服单个网络中标记的数据的不足。它旨在利用部分标记的源网络中的标签信息来帮助完全未标记或部分标记的目标网络中的节点分类。由于跨网络的域转移,现有的单网络学习方法无法解决此问题。一些多网络学习方法在很大程度上依赖于跨网络连接的存在,因此对于此问题是不适用的。为了解决这个问题,我们提出了一种小说\ textColor {black} {graph}通过利用对抗域的适应和图形卷积的技术来传递学习框架。它由两个组成部分组成:半监督的学习组件和一个对抗域的适应性组件。前者的目标是通过源网络和目标网络的给定标签信息学习类别的歧视节点表示,而后者则有助于减轻源和目标域之间的分布差异以促进知识传递。对现实世界数据集的广泛经验评估表明,ADAGCN可以在源网络上以低标签速率成功传输类信息,并且源和目标域之间的差异很大。复制实验结果的源代码可在https://github.com/daiquanyu/adagcn上获得。
translated by 谷歌翻译