图表神经网络(GNN)和消息通过神经网络(MPNNS)被证明是在许多应用中的子图结构中表达的。异构图中的一些应用需要明确的边缘建模,例如子图同样计数和匹配。但是,现有的消息传递机制在理论上并不良好设计。在本文中,我们从特定的边缘到顶点变换开始,利用边缘到顶点双图中的同义性属性。我们证明,搜索原始图中的同构相当于在其双图上搜索。基于该观察,我们提出了通过神经网络(DMPNNS)的双信息以异步方式增强子图同样计数和匹配以及无监督的节点分类。广泛的实验通过在合成和真实异构图中结合节点和边缘表示学习来证明DMPNN的稳健性能。代码可在https://github.com/hkust-knowcomp/dualmessagepass上获得。
translated by 谷歌翻译
随着图表和图表学习的开发,已经提出了许多优越的方法来处理图形结构学习的可扩展性和过度厚度问题。但是,大多数策略都是基于实践经验而不是理论分析而设计的。在本文中,我们使用连接到所有现有顶点的特定虚拟节点,而不会影响原始顶点和边缘属性。我们进一步证明,这种虚拟节点可以帮助构建有效的单态边缘到vertex变换,并呈现呈呈倒数,以恢复原始图。这也表明,添加虚拟节点可以保留本地和全局结构,以更好地图表表示。我们扩展了具有虚拟节点的图形内核和图形神经网络,并在图形分类和子图同构匹配任务上进行实验。经验结果表明,以虚拟节点为输入的图表显着增强了图形结构学习,并且使用其边缘到vertex图也可以实现相似的结果。我们还讨论了神经网络中假人的表达能力的增长。
translated by 谷歌翻译
图表是一个宇宙数据结构,广泛用于组织现实世界中的数据。像交通网络,社交和学术网络这样的各种实际网络网络可以由图表代表。近年来,目睹了在网络中代表顶点的快速发展,进入低维矢量空间,称为网络表示学习。表示学习可以促进图形数据上的新算法的设计。在本调查中,我们对网络代表学习的当前文献进行了全面审查。现有算法可以分为三组:浅埋模型,异构网络嵌入模型,图形神经网络的模型。我们为每个类别审查最先进的算法,并讨论这些算法之间的基本差异。调查的一个优点是,我们系统地研究了不同类别的算法底层的理论基础,这提供了深入的见解,以更好地了解网络表示学习领域的发展。
translated by 谷歌翻译
Graphs are ubiquitous in nature and can therefore serve as models for many practical but also theoretical problems. For this purpose, they can be defined as many different types which suitably reflect the individual contexts of the represented problem. To address cutting-edge problems based on graph data, the research field of Graph Neural Networks (GNNs) has emerged. Despite the field's youth and the speed at which new models are developed, many recent surveys have been published to keep track of them. Nevertheless, it has not yet been gathered which GNN can process what kind of graph types. In this survey, we give a detailed overview of already existing GNNs and, unlike previous surveys, categorize them according to their ability to handle different graph types and properties. We consider GNNs operating on static and dynamic graphs of different structural constitutions, with or without node or edge attributes. Moreover, we distinguish between GNN models for discrete-time or continuous-time dynamic graphs and group the models according to their architecture. We find that there are still graph types that are not or only rarely covered by existing GNN models. We point out where models are missing and give potential reasons for their absence.
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
图形神经网络(GNNS)最流行的设计范例是1跳消息传递 - 反复反复从1跳邻居聚集特征。但是,1-HOP消息传递的表达能力受Weisfeiler-Lehman(1-WL)测试的界定。最近,研究人员通过同时从节点的K-Hop邻居汇总信息传递到K-HOP消息。但是,尚无分析K-Hop消息传递的表达能力的工作。在这项工作中,我们从理论上表征了K-Hop消息传递的表达力。具体而言,我们首先正式区分了两种k-hop消息传递的内核,它们在以前的作品中经常被滥用。然后,我们通过表明它比1-Hop消息传递更强大,从而表征了K-Hop消息传递的表现力。尽管具有较高的表达能力,但我们表明K-Hop消息传递仍然无法区分一些简单的常规图。为了进一步增强其表现力,我们引入了KP-GNN框架,该框架通过利用每个跳跃中的外围子图信息来改善K-HOP消息。我们证明,KP-GNN可以区分几乎所有常规图,包括一些距离常规图,这些图无法通过以前的距离编码方法来区分。实验结果验证了KP-GNN的表达能力和有效性。 KP-GNN在所有基准数据集中都取得了竞争成果。
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
链接预测是图神经网络(GNN)的重要应用。链接预测的大多数现有GNN基于一维Weisfeiler-Lehman(1-WL)测试。 1-wl-gnn首先通过迭代的相邻节点特征来计算中心,然后通过汇总成对节点表示来获得链接表示。正如先前的作品所指出的那样,这两步过程会导致较低的区分功能,因为自然而然地学习节点级表示而不是链接级别。在本文中,我们研究了一种完全不同的方法,该方法可以基于\ textit {二维WEISFEILER-LEHMAN(2-WL)测试直接获得节点对(链接)表示。 2-WL测试直接使用链接(2个小说)作为消息传递单元而不是节点,因此可以直接获得链接表示。我们理论上分析了2-WL测试的表达能力以区分非晶状体链接,并证明其优越的链接与1-WL相比。基于不同的2-WL变体,我们提出了一系列用于链路预测的新型2-WL-GNN模型。在广泛的现实数据集上进行的实验证明了它们对最先进的基线的竞争性能以及优于普通1-WL-GNN的优势。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
最近,图形神经网络(GNNS)在各种现实情景中获得了普及。尽管取得了巨大成功,但GNN的建筑设计严重依赖于体力劳动。因此,自动化图形神经网络(Autopmn)引起了研究界的兴趣和关注,近年来显着改善。然而,现有的autopnn工作主要采用隐式方式来模拟并利用图中的链接信息,这对图中的链路预测任务不充分规范化,并限制了自动启动的其他图表任务。在本文中,我们介绍了一个新的Autognn工作,该工作明确地模拟了缩写为autogel的链接信息。以这种方式,AutoGel可以处理链路预测任务并提高Autognns对节点分类和图形分类任务的性能。具体地,AutoGel提出了一种新的搜索空间,包括层内和层间设计中的各种设计尺寸,并采用更强大的可分辨率搜索算法,以进一步提高效率和有效性。基准数据集的实验结果展示了自动池上的优势在几个任务中。
translated by 谷歌翻译
消息传递神经网络(MPNNS)是由于其简单性和可扩展性而大部分地进行图形结构数据的深度学习的领先架构。不幸的是,有人认为这些架构的表现力有限。本文提出了一种名为Comifariant Subgraph聚合网络(ESAN)的新颖框架来解决这个问题。我们的主要观察是,虽然两个图可能无法通过MPNN可区分,但它们通常包含可区分的子图。因此,我们建议将每个图形作为由某些预定义策略导出的一组子图,并使用合适的等分性架构来处理它。我们为图同构同构同构造的1立维Weisfeiler-Leman(1-WL)测试的新型变体,并在这些新的WL变体方面证明了ESAN的表达性下限。我们进一步证明,我们的方法增加了MPNNS和更具表现力的架构的表现力。此外,我们提供了理论结果,描述了设计选择诸如子图选择政策和等效性神经结构的设计方式如何影响我们的架构的表现力。要处理增加的计算成本,我们提出了一种子图采样方案,可以将其视为我们框架的随机版本。关于真实和合成数据集的一套全面的实验表明,我们的框架提高了流行的GNN架构的表现力和整体性能。
translated by 谷歌翻译
本文旨在为多尺度帧卷积提供一种新颖的光谱图神经网络设计。在光谱范例中,光谱GNN通过提出频谱域中的各种光谱滤波器来提高图形学习任务性能,以捕获全局和本地图形结构信息。虽然现有的光谱方法在某些图表中显示出卓越的性能,但是当图表信息不完整或扰乱时,它们患有缺乏灵活性并脆弱。我们的新帧卷曲卷积包括直接在光谱域中设计的过滤功能,以克服这些限制。所提出的卷积在切断光谱信息中表现出具有很大的灵活性,并有效地减轻了噪声曲线图信号的负效应。此外,为了利用现实世界图数据中的异质性,具有我们新的帧卷积的异构图形神经网络提供了一种用于将元路径的内在拓扑信息与多级图分析嵌入的解决方案。进行了扩展实验实现了具有嘈杂节点特征和卓越性能结果的设置下的现实异构图和均匀图。
translated by 谷歌翻译
Link prediction is a key problem for network-structured data. Link prediction heuristics use some score functions, such as common neighbors and Katz index, to measure the likelihood of links. They have obtained wide practical uses due to their simplicity, interpretability, and for some of them, scalability. However, every heuristic has a strong assumption on when two nodes are likely to link, which limits their effectiveness on networks where these assumptions fail. In this regard, a more reasonable way should be learning a suitable heuristic from a given network instead of using predefined ones. By extracting a local subgraph around each target link, we aim to learn a function mapping the subgraph patterns to link existence, thus automatically learning a "heuristic" that suits the current network. In this paper, we study this heuristic learning paradigm for link prediction. First, we develop a novel γ-decaying heuristic theory. The theory unifies a wide range of heuristics in a single framework, and proves that all these heuristics can be well approximated from local subgraphs. Our results show that local subgraphs reserve rich information related to link existence. Second, based on the γ-decaying theory, we propose a new method to learn heuristics from local subgraphs using a graph neural network (GNN). Its experimental results show unprecedented performance, working consistently well on a wide range of problems.
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
在本文中,我们提供了一种使用图形神经网络(GNNS)的理论,用于多节点表示学习(我们有兴趣学习一组多个节点的表示)。我们知道GNN旨在学习单节点表示。当我们想学习涉及多个节点的节点集表示时,先前作品中的常见做法是直接将GNN学习的多节点表示与节点集的关节表示。在本文中,我们显示了这种方法的基本限制,即无法捕获节点集中节点之间的依赖性,并且认为直接聚合各个节点表示不会导致多个节点的有效关节表示。然后,我们注意到,以前的一些成功的工作作品用于多节点表示学习,包括密封,距离编码和ID-GNN,所有使用的节点标记。这些方法根据应用GNN之前的与目标节点集的关系,首先标记图中的节点。然后,在标记的图表中获得的节点表示被聚合到节点集表示中。通过调查其内部机制,我们将这些节点标记技术统一到单个和最基本的形式,即标记技巧。我们证明,通过标记技巧,可以获得足够富有表现力的GNN学习最具表现力的节点集表示,因此原则上可以解决节点集的任何联合学习任务。关于一个重要的双节点表示学习任务,链接预测,验证了我们理论的实验。我们的工作建立了使用GNN在节点集上使用GNN进行联合预测任务的理论基础。
translated by 谷歌翻译
图表学习目的旨在将节点内容与图形结构集成以学习节点/图表示。然而,发现许多现有的图形学习方法在具有高异性级别的数据上不能很好地工作,这是不同类标签之间很大比例的边缘。解决这个问题的最新努力集中在改善消息传递机制上。但是,尚不清楚异质性是否确实会损害图神经网络(GNNS)的性能。关键是要展现一个节点与其直接邻居之间的关系,例如它们是异性还是同质性?从这个角度来看,我们在这里研究了杂质表示在披露连接节点之间的关系之前/之后的杂音表示的作用。特别是,我们提出了一个端到端框架,该框架既学习边缘的类型(即异性/同质性),并利用边缘类型的信息来提高图形神经网络的表现力。我们以两种不同的方式实施此框架。具体而言,为了避免通过异质边缘传递的消息,我们可以通过删除边缘分类器鉴定的异性边缘来优化图形结构。另外,可以利用有关异性邻居的存在的信息进行特征学习,因此,设计了一种混合消息传递方法来汇总同质性邻居,并根据边缘分类使异性邻居多样化。广泛的实验表明,在整个同质级别的多个数据集上,通过在多个数据集上提出的框架对GNN的绩效提高了显着提高。
translated by 谷歌翻译
异质图具有多个节点和边缘类型,并且在语义上比同质图更丰富。为了学习这种复杂的语义,许多用于异质图的图形神经网络方法使用Metapaths捕获节点之间的多跳相互作用。通常,非目标节点的功能未纳入学习过程。但是,可以存在涉及多个节点或边缘的非线性高阶相互作用。在本文中,我们提出了Simplicial Graph注意网络(SGAT),这是一种简单的复杂方法,可以通过将非目标节点的特征放在简单上来表示这种高阶相互作用。然后,我们使用注意机制和上邻接来生成表示。我们凭经验证明了方法在异质图数据集上使用节点分类任务的方法的功效,并进一步显示了SGAT通过采用随机节点特征来提取结构信息的能力。数值实验表明,SGAT的性能优于其他当前最新的异质图学习方法。
translated by 谷歌翻译
Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.
translated by 谷歌翻译
变压器架构最近在图表表示学习中引起了人们的注意,因为它自然地克服了图神经网络(GNN)的几个局限性,避免了它们严格的结构电感偏置,而仅通过位置编码来编码图形结构。在这里,我们表明,具有位置编码的变压器生成的节点表示不一定捕获它们之间的结构相似性。为了解决这个问题,我们提出了结构感知的变压器,这是一类简单而灵活的图形变压器,建立在新的自我发项机制的基础上。这一新的自我注意力通过在计算注意力之前提取植根于每个节点的子图表来结合结构信息。我们提出了几种自动生成子图表表示的方法,并从理论上说明结果表示至少与子图表一样表现力。从经验上讲,我们的方法在五个图预测基准上实现了最先进的性能。我们的结构感知框架可以利用任何现有的GNN提取子图表表示,我们表明它系统地改善了相对于基本GNN模型的性能,成功地结合了GNN和变形金刚的优势。我们的代码可在https://github.com/borgwardtlab/sat上找到。
translated by 谷歌翻译
图形神经网络(GNNS)具有有限的表现力量,无法正确代表许多图形类。虽然更具表现力的图表表示学习(GRL)替代方案可以区分其中一些类,但它们明显难以实现,可能不会很好地扩展,并且尚未显示在现实世界任务中优于经过良好调整的GNN。因此,设计简单,可扩展和表现力的GRL架构,也实现了现实世界的改进仍然是一个开放的挑战。在这项工作中,我们展示了图形重建的程度 - 从其子图重建图形 - 可以减轻GRL架构目前面临的理论和实际问题。首先,我们利用图形重建来构建两个新的表达图表表示。其次,我们展示了图形重建如何提升任何GNN架构的表现力,同时是一个(可证明的)强大的归纳偏见,用于侵略性的侵略性。凭经验,我们展示了重建如何提高GNN的表现力 - 同时保持其与顶点的排列的不变性 - 通过解决原始GNN的七个图形属性任务而无法解决。此外,我们展示了如何在九世界基准数据集中提升最先进的GNN性能。
translated by 谷歌翻译