Given a resource-rich source graph and a resource-scarce target graph, how can we effectively transfer knowledge across graphs and ensure a good generalization performance? In many high-impact domains (e.g., brain networks and molecular graphs), collecting and annotating data is prohibitively expensive and time-consuming, which makes domain adaptation an attractive option to alleviate the label scarcity issue. In light of this, the state-of-the-art methods focus on deriving domain-invariant graph representation that minimizes the domain discrepancy. However, it has recently been shown that a small domain discrepancy loss may not always guarantee a good generalization performance, especially in the presence of disparate graph structures and label distribution shifts. In this paper, we present TRANSNET, a generic learning framework for augmenting knowledge transfer across graphs. In particular, we introduce a novel notion named trinity signal that can naturally formulate various graph signals at different granularity (e.g., node attributes, edges, and subgraphs). With that, we further propose a domain unification module together with a trinity-signal mixup scheme to jointly minimize the domain discrepancy and augment the knowledge transfer across graphs. Finally, comprehensive empirical results show that TRANSNET outperforms all existing approaches on seven benchmark datasets by a significant margin.
translated by 谷歌翻译
图形预训练策略一直在图形挖掘社区吸引人们的注意力,因为它们在没有任何标签信息的情况下在参数化图形神经网络(GNN)方面的灵活性。关键思想在于通过预测从输入图中提取的掩蔽图信号来编码有价值的信息。为了平衡各种图形信号的重要性(例如节点,边缘,子图),现有方法主要是通过引入超参数来重新进行图形信号的重要性来进行手工设计的。然而,人类对亚最佳高参数的干预通常会注入额外的偏见,并在下游应用中降低了概括性能。本文从新的角度解决了这些局限性,即为预培训GNN提供课程。我们提出了一个名为Mentorgnn的端到端模型,该模型旨在监督具有不同结构和不同特征空间的图表的GNN的预训练过程。为了理解不同粒度的异质图信号,我们提出了一种课程学习范式,该课程自动重新贴出图形信号,以确保对目标域进行良好的概括。此外,我们通过在预先训练的GNN的概括误差上得出自然且可解释的上限,从而对关系数据(即图形)的域自适应问题(即图形)发出了新的启示。有关大量真实图的广泛实验验证并验证了Mentorgnn的性能。
translated by 谷歌翻译
Transfer learning refers to the transfer of knowledge or information from a relevant source domain to a target domain. However, most existing transfer learning theories and algorithms focus on IID tasks, where the source/target samples are assumed to be independent and identically distributed. Very little effort is devoted to theoretically studying the knowledge transferability on non-IID tasks, e.g., cross-network mining. To bridge the gap, in this paper, we propose rigorous generalization bounds and algorithms for cross-network transfer learning from a source graph to a target graph. The crucial idea is to characterize the cross-network knowledge transferability from the perspective of the Weisfeiler-Lehman graph isomorphism test. To this end, we propose a novel Graph Subtree Discrepancy to measure the graph distribution shift between source and target graphs. Then the generalization error bounds on cross-network transfer learning, including both cross-network node classification and link prediction tasks, can be derived in terms of the source knowledge and the Graph Subtree Discrepancy across domains. This thereby motivates us to propose a generic graph adaptive network (GRADE) to minimize the distribution shift between source and target graphs for cross-network transfer learning. Experimental results verify the effectiveness and efficiency of our GRADE framework on both cross-network node classification and cross-domain recommendation tasks.
translated by 谷歌翻译
本文研究了跨网络节点分类的问题,以克服单个网络中标记的数据的不足。它旨在利用部分标记的源网络中的标签信息来帮助完全未标记或部分标记的目标网络中的节点分类。由于跨网络的域转移,现有的单网络学习方法无法解决此问题。一些多网络学习方法在很大程度上依赖于跨网络连接的存在,因此对于此问题是不适用的。为了解决这个问题,我们提出了一种小说\ textColor {black} {graph}通过利用对抗域的适应和图形卷积的技术来传递学习框架。它由两个组成部分组成:半监督的学习组件和一个对抗域的适应性组件。前者的目标是通过源网络和目标网络的给定标签信息学习类别的歧视节点表示,而后者则有助于减轻源和目标域之间的分布差异以促进知识传递。对现实世界数据集的广泛经验评估表明,ADAGCN可以在源网络上以低标签速率成功传输类信息,并且源和目标域之间的差异很大。复制实验结果的源代码可在https://github.com/daiquanyu/adagcn上获得。
translated by 谷歌翻译
在本文中,我们提出了一种使用域鉴别特征模块的双模块网络架构,以鼓励域不变的特征模块学习更多域不变的功能。该建议的架构可以应用于任何利用域不变功能的任何模型,用于无监督域适应,以提高其提取域不变特征的能力。我们在作为代表性算法的神经网络(DANN)模型的区域 - 对抗训练进行实验。在培训过程中,我们为两个模块提供相同的输入,然后分别提取它们的特征分布和预测结果。我们提出了差异损失,以找到预测结果的差异和两个模块之间的特征分布。通过对抗训练来最大化其特征分布和最小化其预测结果的差异,鼓励两个模块分别学习更多域歧视和域不变特征。进行了广泛的比较评估,拟议的方法在大多数无监督的域适应任务中表现出最先进的。
translated by 谷歌翻译
图形神经网络是一种强大的深度学习工具,用于建模图形结构化数据,在众多图形学习任务上表现出了出色的性能。为了解决深图学习中的数据噪声和数据稀缺性问题,最近有关图形数据的研究已加剧。但是,常规数据增强方法几乎无法处理具有多模式性的非欧几里得空间中定义的图形结构化数据。在这项调查中,我们正式提出了图数据扩展的问题,并进一步审查了代表性技术及其在不同深度学习问题中的应用。具体而言,我们首先提出了图形数据扩展技术的分类法,然后通过根据增强信息方式对相关工作进行分类,从而提供结构化的审查。此外,我们总结了以数据为中心的深图学习中两个代表性问题中图数据扩展的应用:(1)可靠的图形学习,重点是增强输入图的实用性以及通过图数据增强的模型容量; (2)低资源图学习,其针对通过图数据扩大标记的训练数据量表的目标。对于每个问题,我们还提供层次结构问题分类法,并审查与图数据增强相关的现有文献。最后,我们指出了有希望的研究方向和未来研究的挑战。
translated by 谷歌翻译
Graph machine learning has been extensively studied in both academia and industry. Although booming with a vast number of emerging methods and techniques, most of the literature is built on the in-distribution hypothesis, i.e., testing and training graph data are identically distributed. However, this in-distribution hypothesis can hardly be satisfied in many real-world graph scenarios where the model performance substantially degrades when there exist distribution shifts between testing and training graph data. To solve this critical problem, out-of-distribution (OOD) generalization on graphs, which goes beyond the in-distribution hypothesis, has made great progress and attracted ever-increasing attention from the research community. In this paper, we comprehensively survey OOD generalization on graphs and present a detailed review of recent advances in this area. First, we provide a formal problem definition of OOD generalization on graphs. Second, we categorize existing methods into three classes from conceptually different perspectives, i.e., data, model, and learning strategy, based on their positions in the graph machine learning pipeline, followed by detailed discussions for each category. We also review the theories related to OOD generalization on graphs and introduce the commonly used graph datasets for thorough evaluations. Finally, we share our insights on future research directions. This paper is the first systematic and comprehensive review of OOD generalization on graphs, to the best of our knowledge.
translated by 谷歌翻译
图形神经网络(GNNS)在具有图形结构数据的各种任务中取得了巨大成功,其中节点分类是必不可少的。无监督的图形域适应(UGDA)显示了其降低节点分类标签成本的实用价值。它利用标记图(即源域)的知识来解决另一个未标记的图形(即目标域)的相同任务。大多数现有的UGDA方法严重依赖于源域中的标记图。它们利用来自源域的标签作为监控信号,并在源图和目标图中共同培训。但是,在一些真实的场景中,由于无法使用或隐私问题,源图无法访问。因此,我们提出了一种名为Source Firect Insuperved Graph域适应(SFUGDA)的新颖情景。在这种情况下,我们可以从源域中杠杆的唯一信息是训练有素的源模型,而不会曝光源图和标签。结果,现有的UGDA方法不再可行。为了解决本实际情况的非琐碎的适应挑战,我们提出了一种模型 - 无话学算法,用于域适应,以充分利用源模型的辨别能力,同时保留目标图上的结构接近度的一致性。我们在理论和经验上证明了所提出的算法的有效性。四个跨域任务的实验结果显示了宏F1得分的一致性改进,高达0.17。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)已实现了节点分类的最新性能。但是,大多数现有的GNN会遭受图形不平衡问题。在许多实际情况下,节点类都是不平衡的,其中一些多数类构成了图的大部分部分。 GNN中的消息传播机制将进一步扩大这些多数类的主导地位,从而导致次级分类性能。在这项工作中,我们试图通过生成少数族裔类实例来平衡培训数据,从而扩展了以前的基于过度采样的技术来解决这个问题。此任务是不平凡的,因为这些技术的设计是实例是独立的。忽视关系信息会使此过采样过程变得复杂。此外,节点分类任务通常仅使用少数标记的节点进行半监督设置,从而为少数族裔实例的产生提供了不足的监督。生成的低质量新节点会损害训练有素的分类器。在这项工作中,我们通过在构造的嵌入空间中综合新节点来解决这些困难,该节点编码节点属性和拓扑信息。此外,对边缘生成器进行同时训练,以建模图结构并为新样品提供关系。为了进一步提高数据效率,我们还探索合成的混合``中间''节点在此过度采样过程中利用多数类的节点。对现实世界数据集的实验验证了我们提出的框架的有效性。
translated by 谷歌翻译
近年来,自我监督学习(SSL)已广泛探索。特别是,生成的SSL在自然语言处理和其他AI领域(例如BERT和GPT的广泛采用)中获得了新的成功。尽管如此,对比度学习 - 严重依赖结构数据的增强和复杂的培训策略,这是图SSL的主要方法,而迄今为止,生成SSL在图形上的进度(尤其是GAES)尚未达到潜在的潜力。正如其他领域所承诺的。在本文中,我们确定并检查对GAE的发展产生负面影响的问题,包括其重建目标,训练鲁棒性和错误指标。我们提出了一个蒙版的图形自动编码器Graphmae,该图可以减轻这些问题,以预处理生成性自我监督图。我们建议没有重建图形结构,而是提议通过掩盖策略和缩放余弦误差将重点放在特征重建上,从而使GraphMae的强大训练受益。我们在21个公共数据集上进行了大量实验,以实现三个不同的图形学习任务。结果表明,Graphmae-A简单的图形自动编码器具有仔细的设计-CAN始终在对比度和生成性最新基准相比,始终产生优于性的表现。这项研究提供了对图自动编码器的理解,并证明了在图上的生成自我监督预训练的潜力。
translated by 谷歌翻译
Graph structure learning (GSL), which aims to learn the adjacency matrix for graph neural networks (GNNs), has shown great potential in boosting the performance of GNNs. Most existing GSL works apply a joint learning framework where the estimated adjacency matrix and GNN parameters are optimized for downstream tasks. However, as GSL is essentially a link prediction task, whose goal may largely differ from the goal of the downstream task. The inconsistency of these two goals limits the GSL methods to learn the potential optimal graph structure. Moreover, the joint learning framework suffers from scalability issues in terms of time and space during the process of estimation and optimization of the adjacency matrix. To mitigate these issues, we propose a graph structure refinement (GSR) framework with a pretrain-finetune pipeline. Specifically, The pre-training phase aims to comprehensively estimate the underlying graph structure by a multi-view contrastive learning framework with both intra- and inter-view link prediction tasks. Then, the graph structure is refined by adding and removing edges according to the edge probabilities estimated by the pre-trained model. Finally, the fine-tuning GNN is initialized by the pre-trained model and optimized toward downstream tasks. With the refined graph structure remaining static in the fine-tuning space, GSR avoids estimating and optimizing graph structure in the fine-tuning phase which enjoys great scalability and efficiency. Moreover, the fine-tuning GNN is boosted by both migrating knowledge and refining graphs. Extensive experiments are conducted to evaluate the effectiveness (best performance on six benchmark datasets), efficiency, and scalability (13.8x faster using 32.8% GPU memory compared to the best GSL baseline on Cora) of the proposed model.
translated by 谷歌翻译
Graph neural networks (GNNs) have received remarkable success in link prediction (GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then apply GNNs to encode edge representations by leveraging the neighborhood structure induced by the fixed subgraph. The prominence of GNNLP methods significantly relies on the adhoc subgraph. Since node connectivity in real-world graphs is complex, one shared subgraph is limited for all edges. Thus, the choices of subgraphs should be personalized to different edges. However, performing personalized subgraph selection is nontrivial since the potential selection space grows exponentially to the scale of edges. Besides, the inference edges are not available during training in link prediction scenarios, so the selection process needs to be inductive. To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP. PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently. Coupling GNNLP models with PS2, we suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs. Comprehensive experiments endorse the effectiveness of our proposed method across various GNNLP backbones (GCN, GraphSage, NGCF, LightGCN, and SEAL) and diverse benchmarks (Planetoid, OGB, and Recommendation datasets). Our code is publicly available at \url{https://github.com/qiaoyu-tan/PS2}
translated by 谷歌翻译
大脑网络将大脑区域之间的复杂连接性描述为图形结构,这为研究脑连接素提供了强大的手段。近年来,图形神经网络已成为使用结构化数据的普遍学习范式。但是,由于数据获取的成本相对较高,大多数大脑网络数据集的样本量受到限制,这阻碍了足够的培训中的深度学习模型。受元学习的启发,该论文以有限的培训示例快速学习新概念,研究了在跨数据库中分析脑连接组的数据有效培训策略。具体而言,我们建议在大型样本大小的数据集上进行元训练模型,并将知识转移到小数据集中。此外,我们还探索了两种面向脑网络的设计,包括Atlas转换和自适应任务重新启动。与其他训练前策略相比,我们的基于元学习的方法实现了更高和稳定的性能,这证明了我们提出的解决方案的有效性。该框架还能够以数据驱动的方式获得有关数据集和疾病之间相似之处的新见解。
translated by 谷歌翻译
关于图表的深度学习最近吸引了重要的兴趣。然而,大多数作品都侧重于(半)监督学习,导致缺点包括重标签依赖,普遍性差和弱势稳健性。为了解决这些问题,通过良好设计的借口任务在不依赖于手动标签的情况下提取信息知识的自我监督学习(SSL)已成为图形数据的有希望和趋势的学习范例。与计算机视觉和自然语言处理等其他域的SSL不同,图表上的SSL具有独家背景,设计理念和分类。在图表的伞下自我监督学习,我们对采用图表数据采用SSL技术的现有方法及时及全面的审查。我们构建一个统一的框架,数学上正式地规范图表SSL的范例。根据借口任务的目标,我们将这些方法分为四类:基于生成的,基于辅助性的,基于对比的和混合方法。我们进一步描述了曲线图SSL在各种研究领域的应用,并总结了绘图SSL的常用数据集,评估基准,性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
translated by 谷歌翻译
准确的实时流量预测对于智能运输系统(ITS)至关重要,它是各种智能移动应用程序的基石。尽管该研究领域以深度学习为主,但最近的研究表明,开发新模型结构的准确性提高正变得边缘。取而代之的是,我们设想可以通过在具有不同数据分布和网络拓扑的城市之间转移“与预测相关的知识”来实现改进。为此,本文旨在提出一个新型的可转移流量预测框架:域对抗空间 - 颞网(DASTNET)。 Dastnet已在多个源网络上进行了预训练,并通过目标网络的流量数据进行了微调。具体而言,我们利用图表表示学习和对抗域的适应技术来学习域不变的节点嵌入,这些嵌入式嵌入将进一步合并以建模时间流量数据。据我们所知,我们是第一个使用对抗性多域改编来解决网络范围的流量预测问题的人。 Dastnet始终优于三个基准数据集上的所有最新基线方法。训练有素的dastnet应用于香港的新交通探测器,并且在可用的探测器可用时(一天之内)可以立即(在一天之内)提供准确的交通预测。总体而言,这项研究提出了一种增强交通预测方法的替代方法,并为缺乏历史流量数据的城市提供了实际含义。
translated by 谷歌翻译
从社会或商业平台等工业生态系统连续发出的数据通常表示为由多种节点/边缘类型组成的异质图(HG)。使用称为异质图神经网络(HGNN)的HGS的最先进的图形学习方法用于学习深层上下文信息形式表示。但是,来自工业应用程序的许多HG数据集都遭受节点类型之间的标签失衡。由于没有直接学习使用扎根于不同节点类型的标签的直接方法,因此HGNN仅应用于具有丰富标签的几个节点类型。我们为HGNN提出了一个称为知识转移网络(KTN)的零射击传输学习模块,该模块通过HG中给出的丰富关系信息将知识从标签的源节点类型转移到零标记的节点类型。 KTN源自我们在这项工作中引入的理论关系,在HGNN模型中给出的每个节点类型的不同特征提取器之间。 KTN将6种不同类型的HGNN模型的性能提高了960%,以推断零标记的节点类型,并且在HGS上的18个不同的转移学习任务中,最高的最先进的转移学习基线胜过最高的最高转移学习基线。
translated by 谷歌翻译
Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction.However, pre-training on graph datasets remains a hard challenge. Several key studies (
translated by 谷歌翻译
自我监督的学习逐渐被出现为一种强大的图形表示学习技术。然而,在图表数据上进行可转换,概括和强大的表示学习仍然是对预训练图形神经网络的挑战。在本文中,我们提出了一种简单有效的自我监督的自我监督的预训练策略,命名为成对半图歧视(PHD),明确地预先在图形级别进行了图形神经网络。 PHD被设计为简单的二进制分类任务,以辨别两个半图是否来自同一源。实验表明,博士学位是一种有效的预训练策略,与最先进的策略相比,在13图分类任务上提供了可比或优越的性能,并在与节点级策略结合时实现了显着的改进。此外,所学习代表的可视化透露,博士策略确实赋予了模型来学习像分子支架等图形级知识。这些结果已将博士学位作为图形级别代表学习中的强大有效的自我监督的学习策略。
translated by 谷歌翻译
基于图形神经网络(GNN)方法最近已成为处理图数据的流行工具,因为它们能够合并结构信息。GNNS性能的唯一障碍是缺乏标记数据。图像和文本数据的数据增强技术无法用于图形数据,因为图形数据的复杂和非欧几里得结构。这一差距迫使研究人员将注意力转向开发图形数据的数据增强技术。大多数提出的图形数据增强(GDA)技术都是特定于任务的。在本文中,我们根据不同的图形任务调查了现有的GDA技术。这项调查不仅提供了GDA研究界的参考,而且还向其他领域的研究人员提供了必要的信息。
translated by 谷歌翻译
在异质图上的自我监督学习(尤其是对比度学习)方法可以有效地摆脱对监督数据的依赖。同时,大多数现有的表示学习方法将异质图嵌入到欧几里得或双曲线的单个几何空间中。这种单个几何视图通常不足以观察由于其丰富的语义和复杂结构而观察到异质图的完整图片。在这些观察结果下,本文提出了一种新型的自我监督学习方法,称为几何对比度学习(GCL),以更好地表示监督数据是不可用时的异质图。 GCL同时观察了从欧几里得和双曲线观点的异质图,旨在强烈合并建模丰富的语义和复杂结构的能力,这有望为下游任务带来更多好处。 GCL通过在局部局部和局部全球语义水平上对比表示两种几何视图之间的相互信息。在四个基准数据集上进行的广泛实验表明,在三个任务上,所提出的方法在包括节点分类,节点群集和相似性搜索在内的三个任务上都超过了强基础,包括无监督的方法和监督方法。
translated by 谷歌翻译