本文介绍了一种通过张量 - 训练(TT)分解来更紧凑地表示图形神经网络(GNN)表的新方法。我们考虑(a)缺乏节点特征的图形数据,从而在训练过程中学习嵌入的情况; (b)我们希望利用GPU平台,即使对于大型内存GPU,也需要较小的桌子来减少主机到GPU的通信。 TT的使用实现了嵌入的紧凑参数化,使其足够小,甚至可以完全适合现代GPU,即使是大量图形。当与明智的初始化和分层图分区结合使用时,这种方法可以将嵌入矢量的大小降低1,659次,至81,362次,在大型公开可用的基准数据集中,可以实现可比性或更高的准确性或更高的准确性和在多GPU系统上的显着速度。在某些情况下,我们的模型在输入上没有明确的节点功能甚至可以匹配使用节点功能的模型的准确性。
translated by 谷歌翻译
Training Graph Neural Networks, on graphs containing billions of vertices and edges, at scale using minibatch sampling poses a key challenge: strong-scaling graphs and training examples results in lower compute and higher communication volume and potential performance loss. DistGNN-MB employs a novel Historical Embedding Cache combined with compute-communication overlap to address this challenge. On a 32-node (64-socket) cluster of $3^{rd}$ generation Intel Xeon Scalable Processors with 36 cores per socket, DistGNN-MB trains 3-layer GraphSAGE and GAT models on OGBN-Papers100M to convergence with epoch times of 2 seconds and 4.9 seconds, respectively, on 32 compute nodes. At this scale, DistGNN-MB trains GraphSAGE 5.2x faster than the widely-used DistDGL. DistGNN-MB trains GraphSAGE and GAT 10x and 17.2x faster, respectively, as compute nodes scale from 2 to 32.
translated by 谷歌翻译
图形神经网络(GNN)已被证明是分析非欧国人图数据的强大工具。但是,缺乏有效的分布图学习(GL)系统极大地阻碍了GNN的应用,尤其是当图形大且GNN相对深时。本文中,我们提出了GraphTheta,这是一种以顶点为中心的图形编程模型实现的新颖分布式和可扩展的GL系统。 GraphTheta是第一个基于分布式图处理的GL系统,其神经网络运算符以用户定义的功能实现。该系统支持多种培训策略,并在分布式(虚拟)机器上启用高度可扩展的大图学习。为了促进图形卷积实现,GraphTheta提出了一个名为NN-Tgar的新的GL抽象,以弥合图形处理和图形深度学习之间的差距。提出了分布式图引擎,以通过混合平行执行进行随机梯度下降优化。此外,除了全球批次和迷你批次外,我们还为新的集群批次培训策略提供了支持。我们使用许多网络大小的数据集评估GraphTheta,范围从小,适度到大规模。实验结果表明,GraphTheta可以很好地扩展到1,024名工人,用于培训内部开发的GNN,该工业尺度的Aripay数据集为14亿个节点和41亿个属性边缘,并带有CPU虚拟机(Dockers)群的小群。 (5 $ \ sim $ 12GB)。此外,GraphTheta比最先进的GNN实现获得了可比或更好的预测结果,证明其学习GNN和现有框架的能力,并且可以超过多达$ 2.02 \ tims $ $ 2.02 \ times $,具有更好的可扩展性。据我们所知,这项工作介绍了文献中最大的边缘属性GNN学习任务。
translated by 谷歌翻译
图形神经网络(GNN)是具有无核数据的应用的有前途的方法。但是,具有数亿节点的大规模图上的培训GNN既是资源又是耗时的。与DNN不同,GNN通常具有更大的内存足迹,因此GPU内存能力和PCIE带宽是GNN培训中的主要资源瓶颈。为了解决此问题,我们提出分叉:一种图形量化方法,通过显着减少内存足迹和PCIE带宽要求来加速GNN训练,以便GNN可以充分利用GPU计算功能。我们的关键见解是,与DNN不同,GNN不太容易发生量化引起的输入特征的信息丢失。我们确定图形特征量化中的主要准确性影响因素,从理论上证明,分叉训练会收敛到网络,在该网络中,损失在未压缩网络的最佳损失的$ \ epsilon $之内。我们使用几种流行的GNN模型和数据集对分叉进行了广泛的评估,包括最大的公共图数据集MAG240M上的图形。结果表明,分叉达到30以上的压缩率,并在边际准确性损失的情况下提高了GNN训练速度200%-320%。特别是,分叉在一小时内仅使用四个GPU在MAG240M上的训练图来实现记录。
translated by 谷歌翻译
图形神经网络(GNNS)将深度神经网络(DNN)的成功扩展到非欧几里德图数据,实现了各种任务的接地性能,例如节点分类和图形属性预测。尽管如此,现有系统效率低,培训数十亿节点和GPU的节点和边缘训练大图。主要瓶颈是准备GPU数据的过程 - 子图采样和特征检索。本文提出了一个分布式GNN培训系统的BGL,旨在解决一些关键思想的瓶颈。首先,我们提出了一种动态缓存引擎,以最小化特征检索流量。通过协同设计缓存政策和抽样顺序,我们发现低开销和高缓存命中率的精美斑点。其次,我们改善了曲线图分区算法,以减少子图采样期间的交叉分区通信。最后,仔细资源隔离减少了不同数据预处理阶段之间的争用。关于各种GNN模型和大图数据集的广泛实验表明,BGL平均明显优于现有的GNN训练系统20.68倍。
translated by 谷歌翻译
开发用于训练图形的可扩展解决方案,用于链路预测任务的Neural网络(GNNS)由于具有高计算成本和巨大内存占用的高数据依赖性,因此由于高数据依赖性而具有挑战性。我们提出了一种新的方法,用于缩放知识图形嵌入模型的培训,以满足这些挑战。为此,我们提出了以下算法策略:自给自足的分区,基于约束的负采样和边缘迷你批量培训。两者都是分区策略和基于约束的负面采样,避免在训练期间交叉分区数据传输。在我们的实验评估中,我们表明,我们基于GNN的知识图形嵌入模型的缩放解决方案在基准数据集中实现了16倍的加速,同时将可比的模型性能作为标准度量的非分布式方法。
translated by 谷歌翻译
Graph Convolutional Networks (GCNs) are extensively utilized for deep learning on graphs. The large data sizes of graphs and their vertex features make scalable training algorithms and distributed memory systems necessary. Since the convolution operation on graphs induces irregular memory access patterns, designing a memory- and communication-efficient parallel algorithm for GCN training poses unique challenges. We propose a highly parallel training algorithm that scales to large processor counts. In our solution, the large adjacency and vertex-feature matrices are partitioned among processors. We exploit the vertex-partitioning of the graph to use non-blocking point-to-point communication operations between processors for better scalability. To further minimize the parallelization overheads, we introduce a sparse matrix partitioning scheme based on a hypergraph partitioning model for full-batch training. We also propose a novel stochastic hypergraph model to encode the expected communication volume in mini-batch training. We show the merits of the hypergraph model, previously unexplored for GCN training, over the standard graph partitioning model which does not accurately encode the communication costs. Experiments performed on real-world graph datasets demonstrate that the proposed algorithms achieve considerable speedups over alternative solutions. The optimizations achieved on communication costs become even more pronounced at high scalability with many processors. The performance benefits are preserved in deeper GCNs having more layers as well as on billion-scale graphs.
translated by 谷歌翻译
Using graph neural networks for large graphs is challenging since there is no clear way of constructing mini-batches. To solve this, previous methods have relied on sampling or graph clustering. While these approaches often lead to good training convergence, they introduce significant overhead due to expensive random data accesses and perform poorly during inference. In this work we instead focus on model behavior during inference. We theoretically model batch construction via maximizing the influence score of nodes on the outputs. This formulation leads to optimal approximation of the output when we do not have knowledge of the trained model. We call the resulting method influence-based mini-batching (IBMB). IBMB accelerates inference by up to 130x compared to previous methods that reach similar accuracy. Remarkably, with adaptive optimization and the right training schedule IBMB can also substantially accelerate training, thanks to precomputed batches and consecutive memory accesses. This results in up to 18x faster training per epoch and up to 17x faster convergence per runtime compared to previous methods.
translated by 谷歌翻译
图形神经网络(GNNS)在学习从图形结构数据中展示了成功,其中包含欺诈检测,推荐和知识图形推理。然而,培训GNN有效地具有挑战性,因为:1)GPU存储器容量有限,对于大型数据集可能不足,而2)基于图形的数据结构导致不规则的数据访问模式。在这项工作中,我们提供了一种统计分析的方法,并确定了GNN培训前更频繁地访问的数据。我们的数据分层方法不仅利用输入图的结构,而且还从实际GNN训练过程中获得了洞察力,以实现更高的预测结果。通过我们的数据分层方法,我们还提供了一种新的数据放置和访问策略,以进一步最大限度地减少CPU-GPU通信开销。我们还考虑了多GPU GNN培训,我们也展示了我们在多GPU系统中的策略的有效性。评估结果表明,我们的工作将CPU-GPU流量降低了87-95%,并通过数亿节点和数十亿边缘的图表提高了现有解决方案的GNN训练速度。
translated by 谷歌翻译
While many systems have been developed to train Graph Neural Networks (GNNs), efficient model inference and evaluation remain to be addressed. For instance, using the widely adopted node-wise approach, model evaluation can account for up to 94% of the time in the end-to-end training process due to neighbor explosion, which means that a node accesses its multi-hop neighbors. On the other hand, layer-wise inference avoids the neighbor explosion problem by conducting inference layer by layer such that the nodes only need their one-hop neighbors in each layer. However, implementing layer-wise inference requires substantial engineering efforts because users need to manually decompose a GNN model into layers for computation and split workload into batches to fit into device memory. In this paper, we develop Deep Graph Inference (DGI) -- a system for easy and efficient GNN model inference, which automatically translates the training code of a GNN model for layer-wise execution. DGI is general for various GNN models and different kinds of inference requests, and supports out-of-core execution on large graphs that cannot fit in CPU memory. Experimental results show that DGI consistently outperforms layer-wise inference across different datasets and hardware settings, and the speedup can be over 1,000x.
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy-using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at https://github.com/google-research/google-research/ tree/master/cluster_gcn.
translated by 谷歌翻译
最近,作为基于图形机器学习的骨干的图形神经网络(GNN)展示了各个域(例如,电子商务)的巨大成功。然而,由于基于高稀疏和不规则的图形操作,GNN的性能通常不令人满意。为此,我们提出,TC-GNN,基于GNN加速框架的第一个GPU张量核心单元(TCU)。核心思想是将“稀疏”GNN计算与“密集”TCU进行调和。具体地,我们对主流GNN计算框架中的稀疏操作进行了深入的分析。我们介绍了一种新颖的稀疏图翻译技术,便于TCU处理稀疏GNN工作量。我们还实现了一个有效的CUDA核心和TCU协作设计,以充分利用GPU资源。我们将TC-GNN与Pytorch框架完全集成,以便于编程。严格的实验在各种GNN型号和数据集设置的最先进的深图库框架上平均显示了1.70倍的加速。
translated by 谷歌翻译
Machine Unerning是在收到删除请求时从机器学习(ML)模型中删除某些培训数据的影响的过程。虽然直接而合法,但从划痕中重新训练ML模型会导致高计算开销。为了解决这个问题,在图像和文本数据的域中提出了许多近似算法,其中SISA是最新的解决方案。它将训练集随机分配到多个碎片中,并为每个碎片训练一个组成模型。但是,将SISA直接应用于图形数据可能会严重损害图形结构信息,从而导致的ML模型实用程序。在本文中,我们提出了Grapheraser,这是一种针对图形数据量身定制的新型机器学习框架。它的贡献包括两种新型的图形分区算法和一种基于学习的聚合方法。我们在五个现实世界图数据集上进行了广泛的实验,以说明Grapheraser的学习效率和模型实用程序。它可以实现2.06 $ \ times $(小数据集)至35.94 $ \ times $(大数据集)未学习时间的改进。另一方面,Grapheraser的实现最高62.5美元\%$更高的F1分数,我们提出的基于学习的聚合方法可达到高达$ 112 \%$ $ F1分数。 github.com/minchen00/graph-unlearning}。}。}
translated by 谷歌翻译
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
在处理大规模网络和关系数据时,降低图是基本的。它们可以通过在粗糙的结构中求解它们来缩小高度计算影响的尺寸。同时,图减少起着在图神经网络中合并层的作用,从结构中提取多分辨率表示。在这些情况下,还原机制保留距离关系和拓扑特性的能力似乎是基本的,以及可扩展性,使其能够应用于实际大小的问题。在本文中,我们基于最大重量$ k $独立的集合的图理论概念引入了图形粗化机制,从而提供了一种贪婪的算法,该算法允许在GPU上有效地并行实现。我们的方法是常规数据(图像,序列)中的第一个图形结构化对应物。我们证明了在路径长度上的失真界限的理论保证,以及在污垢图中保留关键拓扑特性的能力。我们利用这些概念来定义我们在图形分类任务中经验评估的图表合并机制,表明它与文献中的合并方法进行了比较。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
我们提出了一个端到端的可训练框架,通过仅通过查看其条目的一小部分来处理大规模的视觉数据张量。我们的方法将神经网络编码器与张振火车分解组合以学习低级潜在编码,耦合与交叉近似(CA)耦合,以通过原始样本的子集学习表示。 CA是一种自适应采样算法,它是原产的张量分解,并避免明确地使用全高分辨率数据。相反,它主动选择我们获取核心和按需获取的本地代表性样本。所需数量的样本仅使用输入的大小对数进行对数。我们网络中的张量的隐式表示,可以处理在其未压缩形式中不能以其他方式丢失的大网格。所提出的方法对于大规模的多维网格数据(例如,3D断层扫描)以及需要在大型接收领域(例如,预测整个器官的医学条件)的任务,特别适用于需要上下文的任务。代码可在https://github.com/aelphy/c-pic中获得。
translated by 谷歌翻译
大多数图形神经网络(GNNS)无法区分某些图形或图中的某些节点。这使得无法解决某些分类任务。但是,在这些模型中添加其他节点功能可以解决此问题。我们介绍了几种这样的增强,包括(i)位置节点嵌入,(ii)规范节点ID和(iii)随机特征。这些扩展是由理论结果激励的,并通过对合成子图检测任务进行广泛测试来证实。我们发现位置嵌入在这些任务中的其他扩展大大超过了其他扩展。此外,位置嵌入具有更好的样品效率,在不同的图形分布上表现良好,甚至超过了地面真实节点位置。最后,我们表明,不同的增强功能在既定的GNN基准中都具有竞争力,并建议何时使用它们。
translated by 谷歌翻译