图形神经网络(GNNS)在学习从图形结构数据中展示了成功,其中包含欺诈检测,推荐和知识图形推理。然而,培训GNN有效地具有挑战性,因为:1)GPU存储器容量有限,对于大型数据集可能不足,而2)基于图形的数据结构导致不规则的数据访问模式。在这项工作中,我们提供了一种统计分析的方法,并确定了GNN培训前更频繁地访问的数据。我们的数据分层方法不仅利用输入图的结构,而且还从实际GNN训练过程中获得了洞察力,以实现更高的预测结果。通过我们的数据分层方法,我们还提供了一种新的数据放置和访问策略,以进一步最大限度地减少CPU-GPU通信开销。我们还考虑了多GPU GNN培训,我们也展示了我们在多GPU系统中的策略的有效性。评估结果表明,我们的工作将CPU-GPU流量降低了87-95%,并通过数亿节点和数十亿边缘的图表提高了现有解决方案的GNN训练速度。
translated by 谷歌翻译
最近,Graph神经网络(GNNS)已成为聚光灯作为强大的工具,可以有效地在图形结构化数据上执行各种推理任务。随着现实图表的大小继续扩展,GNN训练系统面临可扩展性挑战。分布式培训是一种流行的方法,可以通过扩展CPU节点来应对这一挑战。但是,对基于磁盘的GNN培训的关注不多,该培训可以通过利用NVME SSD等高性能存储设备来以更具成本效益的方式扩展单节点系统。我们观察到,主内存和磁盘之间的数据移动是基于SSD的训练系统中的主要瓶颈,并且常规的GNN训练管道是不错的选择,而无需考虑此开销。因此,我们提出了Ginex,这是第一个基于SSD的GNN训练系统,可以在单台计算机上处​​理数十亿个图形数据集。受到编译器优化的检查员执行模型的启发,Ginex通过分开样品和收集阶段来重组GNN训练管道。这种分离使Ginex能够实现一种可证明的最佳替换算法,即被称为Belady的算法,用于存储器中的Caching特征向量,该算法是I/O访问的主要部分。根据我们对40亿尺度图数据集的评估,Ginex平均比SSD扩展的Pytorch几何得出了2.11倍的训练吞吐量(最大最高2.67倍)。
translated by 谷歌翻译
图形神经网络(GNNS)将深度神经网络(DNN)的成功扩展到非欧几里德图数据,实现了各种任务的接地性能,例如节点分类和图形属性预测。尽管如此,现有系统效率低,培训数十亿节点和GPU的节点和边缘训练大图。主要瓶颈是准备GPU数据的过程 - 子图采样和特征检索。本文提出了一个分布式GNN培训系统的BGL,旨在解决一些关键思想的瓶颈。首先,我们提出了一种动态缓存引擎,以最小化特征检索流量。通过协同设计缓存政策和抽样顺序,我们发现低开销和高缓存命中率的精美斑点。其次,我们改善了曲线图分区算法,以减少子图采样期间的交叉分区通信。最后,仔细资源隔离减少了不同数据预处理阶段之间的争用。关于各种GNN模型和大图数据集的广泛实验表明,BGL平均明显优于现有的GNN训练系统20.68倍。
translated by 谷歌翻译
图形神经网络(GNN)的输入图的大小不断增加,突显了使用多GPU平台的需求。但是,由于计算不平衡和效率较低的通信,现有的多GPU GNN解决方案遭受了劣质性能。为此,我们提出了MGG,这是一种新型的系统设计,可以通过以GPU为中心的软件管道在多GPU平台上加速GNN。 MGG探讨了通过细粒度计算通信管道中隐藏GNN工作负载中远程内存访问延迟的潜力。具体而言,MGG引入了管​​道感知工作负载管理策略和混合数据布局设计,以促进通信局限性重叠。 MGG实现以优化的管道为中心的内核。它包括工作负载交织和基于经经的映射,以进行有效的GPU内核操作管道和专门的内存设计以及优化,以更好地数据访问性能。此外,MGG还结合了轻巧的分析建模和优化启发式方法,以动态提高运行时不同设置的GNN执行性能。全面的实验表明,MGG在各种GNN设置上的最先进的多GPU系统要比最先进的多GPU系统:平均比具有统一虚拟内存设计的多GPU系统快3.65倍,平均比DGCL框架快7.38倍。
translated by 谷歌翻译
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
translated by 谷歌翻译
While many systems have been developed to train Graph Neural Networks (GNNs), efficient model inference and evaluation remain to be addressed. For instance, using the widely adopted node-wise approach, model evaluation can account for up to 94% of the time in the end-to-end training process due to neighbor explosion, which means that a node accesses its multi-hop neighbors. On the other hand, layer-wise inference avoids the neighbor explosion problem by conducting inference layer by layer such that the nodes only need their one-hop neighbors in each layer. However, implementing layer-wise inference requires substantial engineering efforts because users need to manually decompose a GNN model into layers for computation and split workload into batches to fit into device memory. In this paper, we develop Deep Graph Inference (DGI) -- a system for easy and efficient GNN model inference, which automatically translates the training code of a GNN model for layer-wise execution. DGI is general for various GNN models and different kinds of inference requests, and supports out-of-core execution on large graphs that cannot fit in CPU memory. Experimental results show that DGI consistently outperforms layer-wise inference across different datasets and hardware settings, and the speedup can be over 1,000x.
translated by 谷歌翻译
最近,作为基于图形机器学习的骨干的图形神经网络(GNN)展示了各个域(例如,电子商务)的巨大成功。然而,由于基于高稀疏和不规则的图形操作,GNN的性能通常不令人满意。为此,我们提出,TC-GNN,基于GNN加速框架的第一个GPU张量核心单元(TCU)。核心思想是将“稀疏”GNN计算与“密集”TCU进行调和。具体地,我们对主流GNN计算框架中的稀疏操作进行了深入的分析。我们介绍了一种新颖的稀疏图翻译技术,便于TCU处理稀疏GNN工作量。我们还实现了一个有效的CUDA核心和TCU协作设计,以充分利用GPU资源。我们将TC-GNN与Pytorch框架完全集成,以便于编程。严格的实验在各种GNN型号和数据集设置的最先进的深图库框架上平均显示了1.70倍的加速。
translated by 谷歌翻译
Graph neural networks (GNNs) have received great attention due to their success in various graph-related learning tasks. Several GNN frameworks have then been developed for fast and easy implementation of GNN models. Despite their popularity, they are not well documented, and their implementations and system performance have not been well understood. In particular, unlike the traditional GNNs that are trained based on the entire graph in a full-batch manner, recent GNNs have been developed with different graph sampling techniques for mini-batch training of GNNs on large graphs. While they improve the scalability, their training times still depend on the implementations in the frameworks as sampling and its associated operations can introduce non-negligible overhead and computational cost. In addition, it is unknown how much the frameworks are 'eco-friendly' from a green computing perspective. In this paper, we provide an in-depth study of two mainstream GNN frameworks along with three state-of-the-art GNNs to analyze their performance in terms of runtime and power/energy consumption. We conduct extensive benchmark experiments at several different levels and present detailed analysis results and observations, which could be helpful for further improvement and optimization.
translated by 谷歌翻译
许多现实世界图包含时域信息。时间图神经网络在生成的动态节点嵌入中捕获时间信息以及结构和上下文信息。研究人员表明,这些嵌入在许多不同的任务中实现了最先进的表现。在这项工作中,我们提出了TGL,这是一个用于大规模脱机时间图神经网络训练的统一框架,用户可以使用简单的配置文件组成各种时间图神经网络。 TGL包括五个主要组件,一个临时采样器,一个邮箱,节点内存模块,存储器更新程序和消息传递引擎。我们设计了临时CSR数据结构和平行采样器,以有效地对颞邻邻居进行制作微型批次。我们提出了一种新颖的随机块调度技术,该技术可以减轻大批量训练时过时的节点存储器的问题。为了解决仅在小规模数据集上评估当前TGNN的局限性,我们介绍了两个具有0.2亿和13亿个时间边缘的大型现实世界数据集。我们在四个具有单个GPU的小规模数据集上评估了TGL的性能,以及两个具有多个GPU的大数据集,用于链接预测和节点分类任务。我们将TGL与五种方法的开源代码进行了比较,并表明TGL平均达到13倍的速度可实现相似或更高的精度。与基准相比,我们的时间平行采样器在多核CPU上平均达到173倍加速。在4-GPU机器上,TGL可以在1-10小时内训练一个超过10亿个时间边缘的时期。据我们所知,这是第一项提出了一个关于多个GPU的大规模时间图神经网络培训的一般框架的工作。
translated by 谷歌翻译
图形神经网络(GNN)已被证明是分析非欧国人图数据的强大工具。但是,缺乏有效的分布图学习(GL)系统极大地阻碍了GNN的应用,尤其是当图形大且GNN相对深时。本文中,我们提出了GraphTheta,这是一种以顶点为中心的图形编程模型实现的新颖分布式和可扩展的GL系统。 GraphTheta是第一个基于分布式图处理的GL系统,其神经网络运算符以用户定义的功能实现。该系统支持多种培训策略,并在分布式(虚拟)机器上启用高度可扩展的大图学习。为了促进图形卷积实现,GraphTheta提出了一个名为NN-Tgar的新的GL抽象,以弥合图形处理和图形深度学习之间的差距。提出了分布式图引擎,以通过混合平行执行进行随机梯度下降优化。此外,除了全球批次和迷你批次外,我们还为新的集群批次培训策略提供了支持。我们使用许多网络大小的数据集评估GraphTheta,范围从小,适度到大规模。实验结果表明,GraphTheta可以很好地扩展到1,024名工人,用于培训内部开发的GNN,该工业尺度的Aripay数据集为14亿个节点和41亿个属性边缘,并带有CPU虚拟机(Dockers)群的小群。 (5 $ \ sim $ 12GB)。此外,GraphTheta比最先进的GNN实现获得了可比或更好的预测结果,证明其学习GNN和现有框架的能力,并且可以超过多达$ 2.02 \ tims $ $ 2.02 \ times $,具有更好的可扩展性。据我们所知,这项工作介绍了文献中最大的边缘属性GNN学习任务。
translated by 谷歌翻译
最近提出了基于子图的图表学习(SGRL)来应对规范图神经网络(GNNS)遇到的一些基本挑战,并在许多重要的数据科学应用(例如链接,关系和主题预测)中证明了优势。但是,当前的SGRL方法遇到了可伸缩性问题,因为它们需要为每个培训或测试查询提取子图。扩大规范GNN的最新解决方案可能不适用于SGRL。在这里,我们通过共同设计学习算法及其系统支持,为可扩展的SGRL提出了一种新颖的框架Surel。 Surel采用基于步行的子图表分解,并将步行重新形成子图,从而大大降低了子图提取的冗余并支持并行计算。具有数百万个节点和边缘的六个同质,异质和高阶图的实验证明了Surel的有效性和可扩展性。特别是,与SGRL基线相比,Surel可以实现10 $ \ times $ Quad-Up,具有可比甚至更好的预测性能;与规范GNN相比,Surel可实现50%的预测准确性。
translated by 谷歌翻译
图形神经网络(GNN)是具有无核数据的应用的有前途的方法。但是,具有数亿节点的大规模图上的培训GNN既是资源又是耗时的。与DNN不同,GNN通常具有更大的内存足迹,因此GPU内存能力和PCIE带宽是GNN培训中的主要资源瓶颈。为了解决此问题,我们提出分叉:一种图形量化方法,通过显着减少内存足迹和PCIE带宽要求来加速GNN训练,以便GNN可以充分利用GPU计算功能。我们的关键见解是,与DNN不同,GNN不太容易发生量化引起的输入特征的信息丢失。我们确定图形特征量化中的主要准确性影响因素,从理论上证明,分叉训练会收敛到网络,在该网络中,损失在未压缩网络的最佳损失的$ \ epsilon $之内。我们使用几种流行的GNN模型和数据集对分叉进行了广泛的评估,包括最大的公共图数据集MAG240M上的图形。结果表明,分叉达到30以上的压缩率,并在边际准确性损失的情况下提高了GNN训练速度200%-320%。特别是,分叉在一小时内仅使用四个GPU在MAG240M上的训练图来实现记录。
translated by 谷歌翻译
TensorFlow GNN(TF-GNN)是张量曲线的图形神经网络的可扩展库。它是从自下而上设计的,以支持当今信息生态系统中发生的丰富的异质图数据。Google的许多生产模型都使用TF-GNN,最近已作为开源项目发布。在本文中,我们描述了TF-GNN数据模型,其KERAS建模API以及相关功能,例如图形采样,分布式训练和加速器支持。
translated by 谷歌翻译
Using graph neural networks for large graphs is challenging since there is no clear way of constructing mini-batches. To solve this, previous methods have relied on sampling or graph clustering. While these approaches often lead to good training convergence, they introduce significant overhead due to expensive random data accesses and perform poorly during inference. In this work we instead focus on model behavior during inference. We theoretically model batch construction via maximizing the influence score of nodes on the outputs. This formulation leads to optimal approximation of the output when we do not have knowledge of the trained model. We call the resulting method influence-based mini-batching (IBMB). IBMB accelerates inference by up to 130x compared to previous methods that reach similar accuracy. Remarkably, with adaptive optimization and the right training schedule IBMB can also substantially accelerate training, thanks to precomputed batches and consecutive memory accesses. This results in up to 18x faster training per epoch and up to 17x faster convergence per runtime compared to previous methods.
translated by 谷歌翻译
采样是图形神经网络(GNN)培训的关键操作,有助于降低成本。以前的文献已经通过数学和统计方法探索了改进采样算法。但是,采样算法和硬件之间存在差距。在不考虑硬件的情况下,算法设计人员仅在算法级别优化采样,缺少通过利用硬件功能来促进现有采样算法效率的巨大潜力。在本文中,我们开创了一个为主流采样算法提出的统一编程模型,称为GNNSampler,涵盖了各个类别中采样算法的关键过程。其次,为了利用硬件功能,我们选择数据局部性作为案例研究,并在图中探索节点及其邻居之间的数据位置,以减轻采样中不规则的内存访问。第三,我们在GNNSampler中实现了各种采样算法的局部感知优化,以优化一般的采样过程。最后,我们强调在大图数据集上进行实验,以分析训练时间,准确性和硬件级指标之间的相关性。广泛的实验表明,我们的方法通用到主流采样算法,并有助于大大减少训练时间,尤其是在大规模图中。
translated by 谷歌翻译
We present the OPEN GRAPH BENCHMARK (OGB), a diverse set of challenging and realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine learning (ML) research. OGB datasets are large-scale, encompass multiple important graph ML tasks, and cover a diverse range of domains, ranging from social and information networks to biological networks, molecular graphs, source code ASTs, and knowledge graphs. For each dataset, we provide a unified evaluation protocol using meaningful application-specific data splits and evaluation metrics. In addition to building the datasets, we also perform extensive benchmark experiments for each dataset. Our experiments suggest that OGB datasets present significant challenges of scalability to large-scale graphs and out-of-distribution generalization under realistic data splits, indicating fruitful opportunities for future research. Finally, OGB provides an automated end-to-end graph ML pipeline that simplifies and standardizes the process of graph data loading, experimental setup, and model evaluation. OGB will be regularly updated and welcomes inputs from the community. OGB datasets as well as data loaders, evaluation scripts, baseline code, and leaderboards are publicly available at https://ogb.stanford.edu.
translated by 谷歌翻译
Machine Unerning是在收到删除请求时从机器学习(ML)模型中删除某些培训数据的影响的过程。虽然直接而合法,但从划痕中重新训练ML模型会导致高计算开销。为了解决这个问题,在图像和文本数据的域中提出了许多近似算法,其中SISA是最新的解决方案。它将训练集随机分配到多个碎片中,并为每个碎片训练一个组成模型。但是,将SISA直接应用于图形数据可能会严重损害图形结构信息,从而导致的ML模型实用程序。在本文中,我们提出了Grapheraser,这是一种针对图形数据量身定制的新型机器学习框架。它的贡献包括两种新型的图形分区算法和一种基于学习的聚合方法。我们在五个现实世界图数据集上进行了广泛的实验,以说明Grapheraser的学习效率和模型实用程序。它可以实现2.06 $ \ times $(小数据集)至35.94 $ \ times $(大数据集)未学习时间的改进。另一方面,Grapheraser的实现最高62.5美元\%$更高的F1分数,我们提出的基于学习的聚合方法可达到高达$ 112 \%$ $ F1分数。 github.com/minchen00/graph-unlearning}。}。}
translated by 谷歌翻译
Graph Convolutional Networks (GCNs) are extensively utilized for deep learning on graphs. The large data sizes of graphs and their vertex features make scalable training algorithms and distributed memory systems necessary. Since the convolution operation on graphs induces irregular memory access patterns, designing a memory- and communication-efficient parallel algorithm for GCN training poses unique challenges. We propose a highly parallel training algorithm that scales to large processor counts. In our solution, the large adjacency and vertex-feature matrices are partitioned among processors. We exploit the vertex-partitioning of the graph to use non-blocking point-to-point communication operations between processors for better scalability. To further minimize the parallelization overheads, we introduce a sparse matrix partitioning scheme based on a hypergraph partitioning model for full-batch training. We also propose a novel stochastic hypergraph model to encode the expected communication volume in mini-batch training. We show the merits of the hypergraph model, previously unexplored for GCN training, over the standard graph partitioning model which does not accurately encode the communication costs. Experiments performed on real-world graph datasets demonstrate that the proposed algorithms achieve considerable speedups over alternative solutions. The optimizations achieved on communication costs become even more pronounced at high scalability with many processors. The performance benefits are preserved in deeper GCNs having more layers as well as on billion-scale graphs.
translated by 谷歌翻译
分散算法是一种计算形式,通过依赖于直接连接代理之间的低成本通信的本地动态实现全局目标。在涉及分布式数据集的大规模优化任务中,分散算法显示出强大,有时优越,性能与中央节点的分布式算法。最近,发展分散的深度学习算法引起了极大的关注。它们被视为使用参数服务器或环形恢复协议的那些的低通信开销替代方案。但是,缺乏易于使用和高效的软件包仅在纸上保持了最分散的算法。为了填补差距,我们介绍了Bluefog,一个Python库进行了直接的,高性能的不同分散算法的实现。基于各种通信操作的统一抽象,Bluefog提供直观的接口来实现分散的算法的频谱,从使用静态无向图的那些,用于使用动态和定向图形的同步操作进行异步操作。 Bluefog还采用了多种系统级加速技术,以进一步优化深度学习任务的性能。在主流DNN培训任务中,Bluefog达到了更高的吞吐量,并实现了一个总体上的吞吐量1.2 \ times \ sim 1.8 \ times $ speedup,这是一个基于环 - allyuce的最先进的分布式深度学习包。 Bluefog是https://github.com/bluefog-lib/bluefog的开源。
translated by 谷歌翻译
Training Graph Neural Networks, on graphs containing billions of vertices and edges, at scale using minibatch sampling poses a key challenge: strong-scaling graphs and training examples results in lower compute and higher communication volume and potential performance loss. DistGNN-MB employs a novel Historical Embedding Cache combined with compute-communication overlap to address this challenge. On a 32-node (64-socket) cluster of $3^{rd}$ generation Intel Xeon Scalable Processors with 36 cores per socket, DistGNN-MB trains 3-layer GraphSAGE and GAT models on OGBN-Papers100M to convergence with epoch times of 2 seconds and 4.9 seconds, respectively, on 32 compute nodes. At this scale, DistGNN-MB trains GraphSAGE 5.2x faster than the widely-used DistDGL. DistGNN-MB trains GraphSAGE and GAT 10x and 17.2x faster, respectively, as compute nodes scale from 2 to 32.
translated by 谷歌翻译