本文涉及在Semidefinite限制下培训神经网络(NNS)。这种类型的训练问题最近获得了普及,因为半纤维约束可以用于验证包括例如嘴唇峰常数上限的NN的有趣特性,这与NN的鲁棒性或稳定性有关具有NN控制器的动态系统。使用的SemideFinite约束基于底层激活函数满足的扇区约束。遗憾的是,这些新结果的最大瓶颈之一是将Semidefinite限制纳入NNS的训练所需的计算工作,这限制了它们对大NN的可扩展性。我们通过开发NN培训的内部点方法来解决这一挑战,我们使用屏障函数为SEMIDEFINITE约束实现。为了有效地计算屏障术语的梯度,我们利用了半纤维限制的结构。在实验中,我们展示了我们对先前方法的培训方法的卓越效率,这使我们可以在培训Wassersein生成的对抗网络中使用Semidefinite限制,其中鉴别者必须满足Lipschitz条件。
translated by 谷歌翻译
In this work, we propose a dissipativity-based method for Lipschitz constant estimation of 1D convolutional neural networks (CNNs). In particular, we analyze the dissipativity properties of convolutional, pooling, and fully connected layers making use of incremental quadratic constraints for nonlinear activation functions and pooling operations. The Lipschitz constant of the concatenation of these mappings is then estimated by solving a semidefinite program which we derive from dissipativity theory. To make our method as efficient as possible, we take the structure of convolutional layers into account realizing these finite impulse response filters as causal dynamical systems in state space and carrying out the dissipativity analysis for the state space realizations. The examples we provide show that our Lipschitz bounds are advantageous in terms of accuracy and scalability.
translated by 谷歌翻译
我们提出了一个框架,用于稳定验证混合智能线性编程(MILP)代表控制策略。该框架比较了固定的候选策略,该策略承认有效的参数化,可以以低计算成本进行评估,与固定基线策略进行评估,固定基线策略已知稳定但评估昂贵。我们根据基线策略的最坏情况近似错误为候选策略的闭环稳定性提供了足够的条件,我们表明可以通过求解混合构成二次计划(MIQP)来检查这些条件。 。此外,我们证明可以通过求解MILP来计算候选策略的稳定区域的外部近似。所提出的框架足以容纳广泛的候选策略,包括Relu神经网络(NNS),参数二次程序的最佳解决方案图以及模型预测性控制(MPC)策略。我们还根据提议的框架在Python中提供了一个开源工具箱,该工具可以轻松验证自定义NN架构和MPC公式。我们在DC-DC电源转换器案例研究的背景下展示了框架的灵活性和可靠性,并研究了计算复杂性。
translated by 谷歌翻译
稳定性认证并确定安全稳定的初始集是确保动态系统的操作安全性,稳定性和鲁棒性的两个重要问题。随着机器学习工具的出现,需要针对反馈循环中具有机器学习组件的系统来解决这些问题。为了开发一种关于神经网络(NN)控制的非线性系统的稳定性和稳定性的一般理论,提出了基于Lyapunov的稳定性证书,并进一步用于设计用于NN Controller和NN控制器和最大LIPSCHITZ绑定的。也是给定的安全操作域内内部相应的最大诱因(ROA)。为了计算这种强大的稳定NN控制器,它也最大化了系统的长期实用程序,提出了稳定性保证训练(SGT)算法。提出的框架的有效性通过说明性示例得到了验证。
translated by 谷歌翻译
神经网络(NNS)已成功地用于代表复杂动力学系统的状态演变。这样的模型,称为NN动态模型(NNDMS),使用NN的迭代噪声预测来估计随时间推移系统轨迹的分布。尽管它们的准确性,但对NNDMS的安全分析仍然是一个具有挑战性的问题,并且在很大程度上尚未探索。为了解决这个问题,在本文中,我们介绍了一种为NNDM提供安全保证的方法。我们的方法基于随机屏障函数,其与安全性的关系类似于Lyapunov功能的稳定性。我们首先展示了通过凸优化问题合成NNDMS随机屏障函数的方法,该问题又为系统的安全概率提供了下限。我们方法中的一个关键步骤是,NNS的最新凸近似结果的利用是找到零件线性边界,这允许将屏障函数合成问题作为一个方形优化程序的制定。如果获得的安全概率高于所需的阈值,则该系统将获得认证。否则,我们引入了一种生成控制系统的方法,该系统以最小的侵入性方式稳健地最大化安全概率。我们利用屏障函数的凸属性来提出最佳控制合成问题作为线性程序。实验结果说明了该方法的功效。即,他们表明该方法可以扩展到具有多层和数百个神经元的多维NNDM,并且控制器可以显着提高安全性概率。
translated by 谷歌翻译
本文涉及专业示范的学习安全控制法。我们假设系统动态和输出测量图的适当模型以及相应的错误界限。我们首先提出强大的输出控制屏障功能(ROCBF)作为保证安全的手段,通过控制安全集的前向不变性定义。然后,我们提出了一个优化问题,以从展示安全系统行为的专家演示中学习RocBF,例如,从人类运营商收集的数据。随着优化问题,我们提供可验证条件,可确保获得的Rocbf的有效性。这些条件在数据的密度和学习函数的LipsChitz和Lipshitz和界限常数上说明,以及系统动态和输出测量图的模型。当ROCBF的参数化是线性的,然后,在温和的假设下,优化问题是凸的。我们在自动驾驶模拟器卡拉验证了我们的调查结果,并展示了如何从RGB相机图像中学习安全控制法。
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
在智能手机和控制器系统中的爆炸性增长之后,在从集中数据朝向设备生成的数据中消除数据如何生成数据的加速偏移。作为响应,机器学习算法正在适于在本地运行,潜在的硬件有限,设备,以改善用户隐私,减少延迟并更节能。但是,我们对这些方向算法的表现方式和应培训的理解仍然相当有限。为了解决这个问题,介绍了一种方法来自动综合降低的神经网络(具有较少的神经元)近似近似较大的输入/输出映射。从凸的半定程序生成降低的神经网络的权重和偏差,该凸形半定程序产生相对于较大网络的最坏情况近似误差。获得该近似误差的最坏情况界限,并且该方法可以应用于各种神经网络架构。例如,如何区分所提出的方法来产生小型神经网络的现有方法。修剪是在训练成本函数中直接包含最坏情况近似误差,这应该增加鲁棒性。数值示例突出了所提出的方法的潜力。本文的重新实现目的是概括最近导致神经网络对其重量和偏差的鲁棒合成问题的鲁棒性分析。
translated by 谷歌翻译
对手示例可以容易地降低神经网络中的分类性能。提出了促进这些例子的稳健性的实证方法,但往往缺乏分析见解和正式担保。最近,一些稳健性证书在文献中出现了基于系统理论概念的文献。这项工作提出了一种基于增量的耗散性的稳健性证书,用于每个层的线性矩阵不等式形式的神经网络。我们还提出了对该证书的等效光谱标准,该证书可扩展到具有多个层的神经网络。我们展示了对在MNIST培训的前馈神经网络上的对抗对抗攻击的性能和使用CIFAR-10训练的亚历纳特人。
translated by 谷歌翻译
Recurrent neural networks are capable of learning the dynamics of an unknown nonlinear system purely from input-output measurements. However, the resulting models do not provide any stability guarantees on the input-output mapping. In this work, we represent a recurrent neural network as a linear time-invariant system with nonlinear disturbances. By introducing constraints on the parameters, we can guarantee finite gain stability and incremental finite gain stability. We apply this identification method to learn the motion of a four-degrees-of-freedom ship that is moving in open water and compare it against other purely learning-based approaches with unconstrained parameters. Our analysis shows that the constrained recurrent neural network has a lower prediction accuracy on the test set, but it achieves comparable results on an out-of-distribution set and respects stability conditions.
translated by 谷歌翻译
影响模型预测控制(MPC)策略的神经网络(NN)近似的常见问题是缺乏分析工具来评估基于NN的控制器的动作下闭环系统的稳定性。我们介绍了一种通用过程来量化这种控制器的性能,或者设计具有整流的线性单元(Relus)的最小复杂性NN,其保留给定MPC方案的理想性质。通过量化基于NN和基于MPC的状态到输入映射之间的近似误差,我们首先建立适当的条件,涉及两个关键量,最坏情况误差和嘴唇截止恒定,保证闭环系统的稳定性。然后,我们开发了一个离线,混合整数的基于优化的方法,以确切地计算这些数量。这些技术共同提供足以认证MPC控制法的基于Relu的近似的稳定性和性能的条件。
translated by 谷歌翻译
我们提出了基于复发均衡网络的非线性动态控制器的参数化,这是复发性神经网络的概括。我们对控制器保证具有部分观察到的动态系统的指数稳定性的参数化受到限制。最后,我们提出了一种使用投影策略梯度方法合成该控制器的方法,以最大程度地利用任意结构来奖励功能。投影步骤涉及凸优化问题的解决方案。我们通过模拟控制非线性植物(包括用神经网络建模的植物)演示了提出的方法。
translated by 谷歌翻译
生成的对抗网络(GAN)在无监督学习方面取得了巨大的成功。尽管具有显着的经验表现,但关于gan的统计特性的理论研究有限。本文提供了gan的近似值和统计保证,以估算具有H \“ {o} lder空间密度的数据分布。我们的主要结果表明,如果正确选择了生成器和鉴别器网络架构,则gan是一致的估计器在较强的差异指标下的数据分布(例如Wasserstein-1距离。 ,这不受环境维度的诅咒。我们对低维数据的分析基于具有Lipschitz连续性保证的神经网络的通用近似理论,这可能具有独立的兴趣。
translated by 谷歌翻译
To rigorously certify the robustness of neural networks to adversarial perturbations, most state-of-the-art techniques rely on a triangle-shaped linear programming (LP) relaxation of the ReLU activation. While the LP relaxation is exact for a single neuron, recent results suggest that it faces an inherent "convex relaxation barrier" as additional activations are added, and as the attack budget is increased. In this paper, we propose a nonconvex relaxation for the ReLU relaxation, based on a low-rank restriction of a semidefinite programming (SDP) relaxation. We show that the nonconvex relaxation has a similar complexity to the LP relaxation, but enjoys improved tightness that is comparable to the much more expensive SDP relaxation. Despite nonconvexity, we prove that the verification problem satisfies constraint qualification, and therefore a Riemannian staircase approach is guaranteed to compute a near-globally optimal solution in polynomial time. Our experiments provide evidence that our nonconvex relaxation almost completely overcome the "convex relaxation barrier" faced by the LP relaxation.
translated by 谷歌翻译
本文介绍了在最近开发的神经网络架构上的不确定系统构建的非线性控制器的参数化,称为经常性平衡网络(REN)以及YOULA参数化的非线性版本。拟议的框架具有“内置”保证稳定性,即搜索空间中的所有政策导致承包(全球指数稳定的)闭环系统。因此,它需要对成本函数的选择的非常温和的假设,并且可以推广稳定性属性以看不见的数据。这种方法的另一个有用特征是在没有任何约束的情况下直接参数化的策略,这简化了基于无约束优化的广泛的政策学习方法学习(例如随机梯度下降)。我们说明了具有各种模拟示例的所提出的方法。
translated by 谷歌翻译
本文介绍了最近在文献中引入的二次神经网络的分析和设计,以及它们在动态系统的回归,分类,系统识别和控制中的应用。这些网络提供了几个优点,其中最重要的是该体系结构是设计的副产品,尚未确定a-priori,可以通过解决凸优化问题来完成他们的培训可以实现权重,并且输入输出映射可以通过二次形式在分析上表示。从几个示例中也可以看出,这些网络仅使用一小部分培训数据就可以很好地工作。纸质铸造回归,分类,系统识别,稳定性和控制设计作为凸优化问题的结果,可以用多项式时间算法有效地求解到全局最佳。几个示例将显示二次神经网络在应用中的有效性。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
我们开发了一种内点方法来解决受约束的变异不平等(CVI)问题。受乘数在单目标上下文中的交替方向方法(ADMM)方法的效力的启发,我们将ADMM推广为CVIS的一阶方法,我们将其称为基于ADMM基于ADMM的内部点方法(用于受限的VIS)( ACVI)。我们在两个通用类问题中为ACVI提供了收敛保证:(i)当操作员为$ \ xi $ - 单酮,并且(ii)当它是单调的时,限制是有效的,并且游戏不纯粹是旋转的。当操作员为后一种情况添加L-lipschitz时,我们将$ \ MATHCAL {O}的差距函数的速率匹配已知的低界限(1/\ sqrt {k})$和$ \ MATHCAL {O}(O}(O})(最后一个和平均迭代的1/k)$。据我们所知,这是针对具有全球收敛保证的一般CVI问题的一阶内点方法的首次介绍。此外,与以前的工作不同的是,ACVI提供了一种在限制不平的情况下解决CVI的方法。经验分析表明,ACVI比常见的一阶方法具有明显的优势。特别是,(i)当我们的方法从分析中心接近解决方案时,周期性行为显着降低,并且(ii)与基于投影的方法不同,在接近约束时振荡的方法有效地处理了约束。
translated by 谷歌翻译
许多未来的技术依靠神经网络,但是验证其行为的正确性仍然是一个主要挑战。众所周知,在存在少量输入扰动的情况下,神经网络可能会脆弱,从而产生不可预测的输出。因此,神经网络的验证对于它们的采用至关重要,近年来已经提出了许多方法。在本文中,我们重点介绍基于半神经网络验证的基于半决赛的技术(SDP)技术,这特别有吸引力,因为它们可以在确保多项式时间决策的同时编码表达行为。我们的起点是Fazlyab等人提出的DEEPSDP框架,该框架使用二次约束将验证问题抽象为大规模的SDP。但是,当神经网络的大小增长时,解决此SDP的求解很快就变得棘手了。我们的主要观察结果是,通过利用弦宽度和DeepSDP的特定参数化,我们可以将DeepSDP的主要计算瓶颈(一种大的线性基质不等式(LMI))分解为等效的较小LMI的集合。我们的参数化允许可调参数,从而使我们能够在验证过程中权衡效率和准确性。我们称我们的配方和弦 - 深色,并提供实验评估,以表明它可以:(1)有效提高可调参数的精度,(2)(2)在更深层网络上的表现优于deepSDP。
translated by 谷歌翻译
隐式神经网络是一般的学习模型,可以用隐式代数方程替换传统的馈电模型中的层。与传统学习模型相比,隐式网络提供竞争性能和降低的内存消耗。然而,它们可以对输入对抗性扰动保持脆弱。本文提出了隐式神经网络的稳健性验证的理论和计算框架;我们的框架混合在一起混合单调系统理论和收缩理论。首先,给定隐式神经网络,我们介绍了一个相关的嵌入式网络,并显示,给定$ \ ell_ infty $ -norm框限制对输入,嵌入式网络提供$ \ ell_ \ idty $ -norm box超值给定网络的输出。其次,使用$ \ ell _ {\ infty} $ - 矩阵措施,我们为原始和嵌入式系统的良好提出了足够的条件,并设计了一种迭代算法来计算$ \ e _ {\ infty} $ - norm box鲁棒性利润率和可达性和分类问题。第三,独立价值,我们提出了一种新颖的相对分类器变量,导致认证问题的经过认证的对抗性鲁棒性更严格的界限。最后,我们对在Mnist DataSet上培训的非欧几里德单调运营商网络(Nemon)上进行数值模拟。在这些模拟中,我们比较了我们的混合单调对收缩方法的准确性和运行时间与文献中的现有鲁棒性验证方法,以估算认证的对抗性鲁棒性。
translated by 谷歌翻译