Estimating causal effects has become an integral part of most applied fields. Solving these modern causal questions requires tackling violations of many classical causal assumptions. In this work we consider the violation of the classical no-interference assumption, meaning that the treatment of one individuals might affect the outcomes of another. To make interference tractable, we consider a known network that describes how interference may travel. However, unlike previous work in this area, the radius (and intensity) of the interference experienced by a unit is unknown and can depend on different sub-networks of those treated and untreated that are connected to this unit. We study estimators for the average direct treatment effect on the treated in such a setting. The proposed estimator builds upon a Lepski-like procedure that searches over the possible relevant radii and treatment assignment patterns. In contrast to previous work, the proposed procedure aims to approximate the relevant network interference patterns. We establish oracle inequalities and corresponding adaptive rates for the estimation of the interference function. We leverage such estimates to propose and analyze two estimators for the average direct treatment effect on the treated. We address several challenges steaming from the data-driven creation of the patterns (i.e. feature engineering) and the network dependence. In addition to rates of convergence, under mild regularity conditions, we show that one of the proposed estimators is asymptotically normal and unbiased.
translated by 谷歌翻译
本文提出了在多阶段实验的背景下的异质治疗效应的置信区间结构,以$ N $样品和高维,$ D $,混淆。我们的重点是$ d \ gg n $的情况,但获得的结果也适用于低维病例。我们展示了正则化估计的偏差,在高维变焦空间中不可避免,具有简单的双重稳固分数。通过这种方式,不需要额外的偏差,并且我们获得root $ N $推理结果,同时允许治疗和协变量的多级相互依赖性。记忆财产也没有假设;治疗可能取决于所有先前的治疗作业以及以前的所有多阶段混淆。我们的结果依赖于潜在依赖的某些稀疏假设。我们发现具有动态处理的强大推理所需的新产品率条件。
translated by 谷歌翻译
本文提出了一种估计溢出效应存在福利最大化政策的实验设计。我考虑一个设置在其中组织成一个有限数量的大型群集,并在每个群集中以不观察到的方式交互。作为第一种贡献,我介绍了一个单波实验,以估计治疗概率的变化的边际效应,以考虑到溢出率,并测试政策最优性。该设计在群集中独立地随机化处理,并诱导局部扰动到对簇成对的治疗概率。使用估计的边际效应,我构建了对定期治疗分配规则最大化福利的实际测试,并且我表征了其渐近性质。该想法是,研究人员应报告对福利最大化政策的边际效应和测试的估计:边际效应表明福利改善的方向,并提供了关于是否值得进行额外实验以估计估计福利改善的证据治疗分配。作为第二种贡献,我设计了多波实验来估计治疗分配规则并最大化福利。我获得了小型样本保证,最大可获得的福利和估计政策(遗憾)评估的福利之间的差异。这种保证的必要性是,遗憾在迭代和集群的数量中线性会聚到零。校准在信息扩散和现金转移方案上校准的模拟表明,该方法导致了显着的福利改进。
translated by 谷歌翻译
当结果取决于代理在社会或经济网络中如何联系时,我们提出了一个新的非参数建模框架。这种网络干扰描述了治疗溢出,社会互动,社会学习,信息扩散,疾病和金融蔓延,社会资本形成等大的文献。我们的方法通过首先表征在网络中使用其他代理和附近的连接在网络中链接到网络中的方法,如路径距离所测量的连接。然后通过汇集相似配置的代理的结果数据来学习策略或治疗分配的影响。我们通过提出对政策不相关/无治疗效果的假设的渐近有效测试来展示方法,并限制K-Collect-Exbeld估计器的平均平均误差,以实现平均或分布策略效应/治疗响应。
translated by 谷歌翻译
DECIASED机器学习(DML)提供了一种有吸引力的方法来估计观察环境中的治疗效果,在这种情况下,因果参数的识别需要有条件的独立性或不符的假设,因为它可以灵活地控制大量的协变量。本文提供了新的有限样本保证,可保证对高维DML的关节推断,从而界定了估计量的有限样本分布与其渐近高斯近似相距多远。这些保证对应用研究人员很有用,因为它们可以提供距离标称级别的联合置信带覆盖范围的距离。在许多情况下,高维因果参数可能引起人们的关注,例如许多治疗概况的吃量,或者在许多结果上进行治疗的食品。我们还涵盖了无限维度参数,例如对潜在结果的整个边际分布的影响。本文中的有限样本保证补充了DML估计量的一致性和渐近正态性的现有结果,DML估计量是渐近的,或仅处理一维情况。
translated by 谷歌翻译
即使是最精确的经济数据集也具有嘈杂,丢失,离散化或私有化的变量。实证研究的标准工作流程涉及数据清理,然后是数据分析,通常忽略数据清洁的偏差和方差后果。我们制定了具有损坏数据的因果推理的半造型模型,以包括数据清洁和数据分析。我们提出了一种新的数据清洁,估计和推理的新的端到端程序,以及数据清洁调整的置信区间。通过有限的示例参数,我们证明了因果关系参数的估算器的一致性,高斯近似和半游戏效率。 Gaussian近似的速率为N ^ { - 1/2} $,如平均治疗效果,如平均治疗效果,并且优雅地为当地参数劣化,例如特定人口统计的异构治疗效果。我们的关键假设是真正的协变量是较低的等级。在我们的分析中,我们为矩阵完成,统计学习和半统计统计提供了非对症的理论贡献。我们验证了数据清洁调整的置信区间隔的覆盖范围校准,以类似于2020年美国人口普查中实施的差异隐私。
translated by 谷歌翻译
当并非观察到所有混杂因子并获得负面对照时,我们研究因果参数的估计。最近的工作表明,这些方法如何通过两个所谓的桥梁函数来实现识别和有效估计。在本文中,我们使用阴性对照来应对因果推断的主要挑战:这些桥梁功能的识别和估计。先前的工作依赖于这些功能的完整性条件,以识别因果参数并在估计中需要进行独特性假设,并且还集中于桥梁函数的参数估计。相反,我们提供了一种新的识别策略,以避免完整性条件。而且,我们根据最小学习公式为这些功能提供新的估计量。这些估计值适合通用功能类别,例如重现Hilbert空间和神经网络。我们研究了有限样本收敛的结果,既可以估计桥梁功能本身,又要在各种假设组合下对因果参数进行最终估计。我们尽可能避免桥梁上的独特条件。
translated by 谷歌翻译
治疗效应估计的因果推理方法通常假设独立的实验单位。但是,由于实验单元可能会相互作用,因此这种假设通常值得怀疑。我们开发了增强的反可能性加权(AIPW),以估计和推断因果治疗对依赖观察数据的影响。我们的框架涵盖了网络中相互作用的单位引起的溢出效应的非常普遍的案例。我们使用插件机学习来估计无限维的滋扰成分,导致一致的治疗效应估计器以参数速率收敛,渐近地遵循高斯分布。
translated by 谷歌翻译
本文研究了在潜在的结果框架中使用深神经网络(DNN)的平均治疗效果(ATE)的估计和推理。在一些规则性条件下,观察到的响应可以作为与混杂变量和治疗指标作为自变量的平均回归问题的响应。使用这种配方,我们研究了通过使用特定网络架构的DNN回归基于估计平均回归函数的两种尝试估计和推断方法。我们表明ATE的两个DNN估计在底层真正的均值回归模型上的一些假设下与无维一致性率一致。我们的模型假设可容纳观察到的协变量的潜在复杂的依赖结构,包括治疗指标和混淆变量之间的潜在因子和非线性相互作用。我们还基于采样分裂的思想,确保精确推理和不确定量化,建立了我们估计的渐近常态。仿真研究和实际数据应用证明了我们的理论调查结果,支持我们的DNN估计和推理方法。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
我们考虑在估计涉及依赖参数的高维滋扰的估计方程中估计一个低维参数。一个中心示例是因果推理中(局部)分位数处理效应((L)QTE)的有效估计方程,涉及在分位数以估计的分位数评估的协方差累积分布函数。借记机学习(DML)是一种使用灵活的机器学习方法估算高维滋扰的数据分解方法,但是将其应用于参数依赖性滋扰的问题是不切实际的。对于(L)QTE,DML要求我们学习整个协变量累积分布函数。相反,我们提出了局部偏见的机器学习(LDML),该学习避免了这一繁重的步骤,并且只需要对参数进行一次初始粗糙猜测而估算烦恼。对于(L)QTE,LDML仅涉及学习两个回归功能,这是机器学习方法的标准任务。我们证明,在松弛速率条件下,我们的估计量与使用未知的真实滋扰的不可行的估计器具有相同的有利渐近行为。因此,LDML值得注意的是,当我们必须控制许多协变量和/或灵活的关系时,如(l)QTES在((l)QTES)中,实际上可以有效地估算重要数量,例如(l)QTES。
translated by 谷歌翻译
This paper provides estimation and inference methods for a conditional average treatment effects (CATE) characterized by a high-dimensional parameter in both homogeneous cross-sectional and unit-heterogeneous dynamic panel data settings. In our leading example, we model CATE by interacting the base treatment variable with explanatory variables. The first step of our procedure is orthogonalization, where we partial out the controls and unit effects from the outcome and the base treatment and take the cross-fitted residuals. This step uses a novel generic cross-fitting method we design for weakly dependent time series and panel data. This method "leaves out the neighbors" when fitting nuisance components, and we theoretically power it by using Strassen's coupling. As a result, we can rely on any modern machine learning method in the first step, provided it learns the residuals well enough. Second, we construct an orthogonal (or residual) learner of CATE -- the Lasso CATE -- that regresses the outcome residual on the vector of interactions of the residualized treatment with explanatory variables. If the complexity of CATE function is simpler than that of the first-stage regression, the orthogonal learner converges faster than the single-stage regression-based learner. Third, we perform simultaneous inference on parameters of the CATE function using debiasing. We also can use ordinary least squares in the last two steps when CATE is low-dimensional. In heterogeneous panel data settings, we model the unobserved unit heterogeneity as a weakly sparse deviation from Mundlak (1978)'s model of correlated unit effects as a linear function of time-invariant covariates and make use of L1-penalization to estimate these models. We demonstrate our methods by estimating price elasticities of groceries based on scanner data. We note that our results are new even for the cross-sectional (i.i.d) case.
translated by 谷歌翻译
在本文中,我们提出了一种非参数估计的方法,并推断了一般样本选择模型中因果效应参数的异质界限,初始治疗可能会影响干预后结果是否观察到。可观察到的协变量可能会混淆治疗选择,而观察结果和不可观察的结果可能会混淆。该方法提供条件效应界限作为策略相关的预处理变量的功能。它允许对身份不明的条件效应曲线进行有效的统计推断。我们使用灵活的半参数脱偏机学习方法,该方法可以适应柔性功能形式和治疗,选择和结果过程之间的高维混杂变量。还提供了易于验证的高级条件,以进行估计和错误指定的鲁棒推理保证。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
We consider after-study statistical inference for sequentially designed experiments wherein multiple units are assigned treatments for multiple time points using treatment policies that adapt over time. Our goal is to provide inference guarantees for the counterfactual mean at the smallest possible scale -- mean outcome under different treatments for each unit and each time -- with minimal assumptions on the adaptive treatment policy. Without any structural assumptions on the counterfactual means, this challenging task is infeasible due to more unknowns than observed data points. To make progress, we introduce a latent factor model over the counterfactual means that serves as a non-parametric generalization of the non-linear mixed effects model and the bilinear latent factor model considered in prior works. For estimation, we use a non-parametric method, namely a variant of nearest neighbors, and establish a non-asymptotic high probability error bound for the counterfactual mean for each unit and each time. Under regularity conditions, this bound leads to asymptotically valid confidence intervals for the counterfactual mean as the number of units and time points grows to $\infty$.
translated by 谷歌翻译
In many investigations, the primary outcome of interest is difficult or expensive to collect. Examples include long-term health effects of medical interventions, measurements requiring expensive testing or follow-up, and outcomes only measurable on small panels as in marketing. This reduces effective sample sizes for estimating the average treatment effect (ATE). However, there is often an abundance of observations on surrogate outcomes not of primary interest, such as short-term health effects or online-ad click-through. We study the role of such surrogate observations in the efficient estimation of treatment effects. To quantify their value, we derive the semiparametric efficiency bounds on ATE estimation with and without the presence of surrogates and several intermediary settings. The difference between these characterizes the efficiency gains from optimally leveraging surrogates. We study two regimes: when the number of surrogate observations is comparable to primary-outcome observations and when the former dominates the latter. We take an agnostic missing-data approach circumventing strong surrogate conditions previously assumed. To leverage surrogates' efficiency gains, we develop efficient ATE estimation and inference based on flexible machine-learning estimates of nuisance functions appearing in the influence functions we derive. We empirically demonstrate the gains by studying the long-term earnings effect of job training.
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
个性化决定规则(IDR)是一个决定函数,可根据他/她观察到的特征分配给定的治疗。文献中的大多数现有工作考虑使用二进制或有限的许多治疗方案的设置。在本文中,我们专注于连续治疗设定,并提出跳跃间隔 - 学习,开发一个最大化预期结果的个性化间隔值决定规则(I2DR)。与推荐单一治疗的IDRS不同,所提出的I2DR为每个人产生了一系列治疗方案,使其在实践中实施更加灵活。为了获得最佳I2DR,我们的跳跃间隔学习方法估计通过跳转惩罚回归给予治疗和协变量的结果的条件平均值,并基于估计的结果回归函数来衍生相应的最佳I2DR。允许回归线是用于清晰的解释或深神经网络的线性,以模拟复杂的处理 - 协调会相互作用。为了实现跳跃间隔学习,我们开发了一种基于动态编程的搜索算法,其有效计算结果回归函数。当结果回归函数是处理空间的分段或连续功能时,建立所得I2DR的统计特性。我们进一步制定了一个程序,以推断(估计)最佳政策下的平均结果。进行广泛的模拟和对华法林研究的真实数据应用,以证明所提出的I2DR的经验有效性。
translated by 谷歌翻译
由于在数据稀缺的设置中,交叉验证的性能不佳,我们提出了一个新颖的估计器,以估计数据驱动的优化策略的样本外部性能。我们的方法利用优化问题的灵敏度分析来估计梯度关于数据中噪声量的最佳客观值,并利用估计的梯度将策略的样本中的表现为依据。与交叉验证技术不同,我们的方法避免了为测试集牺牲数据,在训练和因此非常适合数据稀缺的设置时使用所有数据。我们证明了我们估计量的偏见和方差范围,这些问题与不确定的线性目标优化问题,但已知的,可能是非凸的,可行的区域。对于更专业的优化问题,从某种意义上说,可行区域“弱耦合”,我们证明结果更强。具体而言,我们在估算器的错误上提供明确的高概率界限,该估计器在策略类别上均匀地保持,并取决于问题的维度和策略类的复杂性。我们的边界表明,在轻度条件下,随着优化问题的尺寸的增长,我们的估计器的误差也会消失,即使可用数据的量仍然很小且恒定。说不同的是,我们证明我们的估计量在小型数据中的大规模政权中表现良好。最后,我们通过数值将我们提出的方法与最先进的方法进行比较,通过使用真实数据调度紧急医疗响应服务的案例研究。我们的方法提供了更准确的样本外部性能估计,并学习了表现更好的政策。
translated by 谷歌翻译
Many scientific and engineering challenges-ranging from personalized medicine to customized marketing recommendations-require an understanding of treatment effect heterogeneity. In this paper, we develop a non-parametric causal forest for estimating heterogeneous treatment effects that extends Breiman's widely used random forest algorithm. In the potential outcomes framework with unconfoundedness, we show that causal forests are pointwise consistent for the true treatment effect, and have an asymptotically Gaussian and centered sampling distribution. We also discuss a practical method for constructing asymptotic confidence intervals for the true treatment effect that are centered at the causal forest estimates. Our theoretical results rely on a generic Gaussian theory for a large family of random forest algorithms. To our knowledge, this is the first set of results that allows any type of random forest, including classification and regression forests, to be used for provably valid statistical inference. In experiments, we find causal forests to be substantially more powerful than classical methods based on nearest-neighbor matching, especially in the presence of irrelevant covariates.
translated by 谷歌翻译