从分区的输入空间中生成不安全的子要求,以支持验证引导的测试案例以正式验证黑盒模型,这对研究人员来说是一个具有挑战性的问题。搜索空间的大小使详尽的搜索在计算上是不切实际的。本文调查了一种元热疗法方法,以在分区的输入空间中搜索不安全的候选子要求。我们提出了一种负选择算法(NSA),用于识别给定安全性质内候选人的不安全区域。 NSA算法的元效力能力使得在验证这些区域的一部分时估算庞大的不安全区域成为可能。我们利用分区空间的并行执行来生产安全区域。基于安全区域的先验知识的NSA用于识别候选不安全区域,然后使用Marabou框架来验证NSA结果。我们的初步实验和评估表明,该程序在用Marabou框架验证的高精度验证时发现候选人不安全的子裁定。
translated by 谷歌翻译
Deep neural networks have emerged as a widely used and effective means for tackling complex, real-world problems. However, a major obstacle in applying them to safety-critical systems is the great difficulty in providing formal guarantees about their behavior. We present a novel, scalable, and efficient technique for verifying properties of deep neural networks (or providing counter-examples). The technique is based on the simplex method, extended to handle the non-convex Rectified Linear Unit (ReLU ) activation function, which is a crucial ingredient in many modern neural networks. The verification procedure tackles neural networks as a whole, without making any simplifying assumptions. We evaluated our technique on a prototype deep neural network implementation of the next-generation airborne collision avoidance system for unmanned aircraft (ACAS Xu). Results show that our technique can successfully prove properties of networks that are an order of magnitude larger than the largest networks verified using existing methods.
translated by 谷歌翻译
深度神经网络(DNN)越来越多地用于安全至关重要的系统中,迫切需要保证其正确性。因此,验证社区设计了多种技术和工具来验证DNN。当DNN验证者发现触发错误的输入时,很容易确认;但是,当他们报告不存在错误时,就无法确保验证工具本身没有缺陷。由于在DNN验证工具中已经观察到了多个错误,因此这将DNN验证的适用性提出了质疑。在这项工作中,我们提出了一种具有证明生产能力的基于简单的DNN验证符的新型机制:产生易于检查的不可满足性的见证人,这证明了没有错误的情况。我们的证明生产是基于众所周知的Farkas引理的有效适应,并结合了处理分段线性函数和数值精确误差的机制。作为概念的证明,我们在Marabou DNN验证者之上实施了我们的技术。我们对避免空中碰撞的安全至关重要系统的评估表明,在几乎所有情况下,证明生产都成功了,只需要最小的开销。
translated by 谷歌翻译
在过去的十年中,神经网络(NNS)已被广泛用于许多应用程序,包括安全系统,例如自主系统。尽管采用了新兴的采用,但众所周知,NNS容易受到对抗攻击的影响。因此,提供确保此类系统正常工作的保证非常重要。为了解决这些问题,我们介绍了一个修复不安全NNS W.R.T.的框架。安全规范,即利用可满足的模型理论(SMT)求解器。我们的方法能够通过仅修改其重量值的一些重量值来搜索新的,安全的NN表示形式。此外,我们的技术试图最大程度地提高与原始网络在其决策边界方面的相似性。我们进行了广泛的实验,以证明我们提出的框架能够产生安全NNS W.R.T.的能力。对抗性的鲁棒性特性,只有轻度的准确性损失(就相似性而言)。此外,我们将我们的方法与天真的基线进行比较,以证明其有效性。总而言之,我们提供了一种算法以自动修复具有安全性的算法,并建议一些启发式方法以提高其计算性能。当前,通过遵循这种方法,我们能够产生由分段线性relu激活函数组成的小型(即具有多达数百个参数)的小型(即具有多达数百个参数)。然而,我们的框架是可以合成NNS W.R.T.的一般框架。一阶逻辑规范的任何可决定片段。
translated by 谷歌翻译
Fairness of machine learning (ML) software has become a major concern in the recent past. Although recent research on testing and improving fairness have demonstrated impact on real-world software, providing fairness guarantee in practice is still lacking. Certification of ML models is challenging because of the complex decision-making process of the models. In this paper, we proposed Fairify, an SMT-based approach to verify individual fairness property in neural network (NN) models. Individual fairness ensures that any two similar individuals get similar treatment irrespective of their protected attributes e.g., race, sex, age. Verifying this fairness property is hard because of the global checking and non-linear computation nodes in NN. We proposed sound approach to make individual fairness verification tractable for the developers. The key idea is that many neurons in the NN always remain inactive when a smaller part of the input domain is considered. So, Fairify leverages whitebox access to the models in production and then apply formal analysis based pruning. Our approach adopts input partitioning and then prunes the NN for each partition to provide fairness certification or counterexample. We leveraged interval arithmetic and activation heuristic of the neurons to perform the pruning as necessary. We evaluated Fairify on 25 real-world neural networks collected from four different sources, and demonstrated the effectiveness, scalability and performance over baseline and closely related work. Fairify is also configurable based on the domain and size of the NN. Our novel formulation of the problem can answer targeted verification queries with relaxations and counterexamples, which have practical implications.
translated by 谷歌翻译
神经网络已广泛应用于垃圾邮件和网络钓鱼检测,入侵预防和恶意软件检测等安全应用程序。但是,这种黑盒方法通常在应用中具有不确定性和不良的解释性。此外,神经网络本身通常容易受到对抗攻击的影响。由于这些原因,人们对可信赖和严格的方法有很高的需求来验证神经网络模型的鲁棒性。对抗性的鲁棒性在处理恶意操纵输入时涉及神经网络的可靠性,是安全和机器学习中最热门的主题之一。在这项工作中,我们在神经网络的对抗性鲁棒性验证中调查了现有文献,并在机器学习,安全和软件工程领域收集了39项多元化研究工作。我们系统地分析了它们的方法,包括如何制定鲁棒性,使用哪种验证技术以及每种技术的优势和局限性。我们从正式验证的角度提供分类学,以全面理解该主题。我们根据财产规范,减少问题和推理策略对现有技术进行分类。我们还展示了使用样本模型在现有研究中应用的代表性技术。最后,我们讨论了未来研究的开放问题。
translated by 谷歌翻译
We present an approach for the verification of feed-forward neural networks in which all nodes have a piece-wise linear activation function. Such networks are often used in deep learning and have been shown to be hard to verify for modern satisfiability modulo theory (SMT) and integer linear programming (ILP) solvers.The starting point of our approach is the addition of a global linear approximation of the overall network behavior to the verification problem that helps with SMT-like reasoning over the network behavior. We present a specialized verification algorithm that employs this approximation in a search process in which it infers additional node phases for the non-linear nodes in the network from partial node phase assignments, similar to unit propagation in classical SAT solving. We also show how to infer additional conflict clauses and safe node fixtures from the results of the analysis steps performed during the search. The resulting approach is evaluated on collision avoidance and handwritten digit recognition case studies.
translated by 谷歌翻译
我们提出了一个新颖的框架,用于在感知任务上为神经网络指定和验证全球的正确性。关于感知任务的神经网络验证的大多数工作都集中在鲁棒性验证上。与鲁棒性验证不同,旨在验证网络的预测在标记点周围的某些本地区域中稳定,我们的框架提供了一种在整个目标输入空间中全球指定正确性的方法,并验证网络是否适用于所有目标输入是否正确(或找到网络不正确的区域)。我们通过1)由世界所有相关状态组成的状态空间以及2)观察过程产生来自世界各州的神经网络输入。用有限数量的瓷砖铺平状态和输入空间,从状态瓷砖和网络输出范围从输入图块获得地面真相界限,然后比较地面真相和网络输出范围,在网络输出误差上为任何任何内容提供了上限感兴趣的输入。提出的框架还启用了检测非法输入 - 未包含(或接近)目标输入空间中未包含的输入,如状态空间和观察过程(神经网络不是为了在其上使用的),以便我们我们当我们无法保证时可以标记。两个案例研究的结果突出了我们技术验证整个目标输入空间上误差界限的能力,并显示误差界限如何在状态和输入空间上变化。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
深度神经网络(DNN)已成为实现各种复杂任务的首选技术。但是,正如许多最近的研究所强调的那样,即使是对正确分类的输入的不可察觉的扰动也可能导致DNN错误分类。这使DNNS容易受到攻击者的战略输入操作,并且对环境噪声过敏。为了减轻这种现象,从业人员通过DNNS的“合奏”进行联合分类。通过汇总不同单个DNN的分类输出对相同的输入,基于合奏的分类可以减少因任何单个DNN的随机训练过程的特定实现而导致错误分类的风险。但是,DNN集合的有效性高度依赖于其成员 *在许多不同的输入上没有同时错误 *。在本案例研究中,我们利用DNN验证的最新进展,设计一种方法来识别一种合奏组成,即使输入对对抗性进行了扰动,也不太容易出现同时误差 - 从而导致基于更坚固的集合分类。我们提出的框架使用DNN验证器作为后端,并包括启发式方法,有助于降低直接验证合奏的高复杂性。从更广泛的角度来看,我们的工作提出了一个新颖的普遍目标,以实现正式验证,该目标可能可以改善各种应用领域的现实世界中基于深度学习的系统的鲁棒性。
translated by 谷歌翻译
While deep neural networks (DNNs) have demonstrated impressive performance in solving many challenging tasks, they are limited to resource-constrained devices owing to their demand for computation power and storage space. Quantization is one of the most promising techniques to address this issue by quantizing the weights and/or activation tensors of a DNN into lower bit-width fixed-point numbers. While quantization has been empirically shown to introduce minor accuracy loss, it lacks formal guarantees on that, especially when the resulting quantized neural networks (QNNs) are deployed in safety-critical applications. A majority of existing verification methods focus exclusively on individual neural networks, either DNNs or QNNs. While promising attempts have been made to verify the quantization error bound between DNNs and their quantized counterparts, they are not complete and more importantly do not support fully quantified neural networks, namely, only weights are quantized. To fill this gap, in this work, we propose a quantization error bound verification method (QEBVerif), where both weights and activation tensors are quantized. QEBVerif consists of two analyses: a differential reachability analysis (DRA) and a mixed-integer linear programming (MILP) based verification method. DRA performs difference analysis between the DNN and its quantized counterpart layer-by-layer to efficiently compute a tight quantization error interval. If it fails to prove the error bound, then we encode the verification problem into an equivalent MILP problem which can be solved by off-the-shelf solvers. Thus, QEBVerif is sound, complete, and arguably efficient. We implement QEBVerif in a tool and conduct extensive experiments, showing its effectiveness and efficiency.
translated by 谷歌翻译
本文提出了一种验证网络物理安全 - 关键系统中发现的非线性人工神经网络(ANN)行为的方法。我们将Sigmoid函数的专用间隔约束传播器实施到SMT求解器ISAT中,并将这种方法与组成方法进行比较,该方法通过ISAT中可用的基本算术特征和近似方法来编码Sigmoid函数。我们的实验结果表明,专用和组成方法明显优于近似方法。在我们所有的基准中,专门的方法与组成方法相比表现出相等或更好的性能。
translated by 谷歌翻译
Neural networks are increasingly applied in safety critical domains, their verification thus is gaining importance. A large class of recent algorithms for proving input-output relations of feed-forward neural networks are based on linear relaxations and symbolic interval propagation. However, due to variable dependencies, the approximations deteriorate with increasing depth of the network. In this paper we present DPNeurifyFV, a novel branch-and-bound solver for ReLU networks with low dimensional input-space that is based on symbolic interval propagation with fresh variables and input-splitting. A new heuristic for choosing the fresh variables allows to ameliorate the dependency problem, while our novel splitting heuristic, in combination with several other improvements, speeds up the branch-and-bound procedure. We evaluate our approach on the airborne collision avoidance networks ACAS Xu and demonstrate runtime improvements compared to state-of-the-art tools.
translated by 谷歌翻译
随着神经网络作为任务至关重要系统中组成部分的越来越多的整合,越来越需要确保它们满足各种安全性和livesice要求。近年来,已经提出了许多声音和完整的验证方法,但这些方法通常受到严重的可伸缩性限制。最近的工作提出了通过抽象 - 再填充功能增强这种验证技术的增强,这些功能已被证明可以提高可伸缩性:而不是验证大型且复杂的网络,而是验证者构造,然后验证一个较小的网络,其正确性意味着原始的正确性网络。这种方案的缺点是,如果验证较小的网络失败,则验证者需要执行改进步骤,以增加验证网络的大小,然后开始从SCRATCH验证新网络 - 有效地``'浪费''它的早期工作在验证较小的网络方面。在本文中,我们通过使用\ emph {残留推理}来提高基于抽象的神经网络验证的增强:在验证抽象网络时使用信息的过程,以加快对精制网络的验证。本质上,该方法允许验证者存储有关确保正确行为的搜索空间部分的信息,并允许其专注于可能发现错误的区域。我们实施了我们的方法,以扩展到Marabou验证者,并获得了有希望的结果。
translated by 谷歌翻译
由于它们在计算机视觉,图像处理和其他人领域的优异性能,卷积神经网络具有极大的普及。不幸的是,现在众所周知,卷积网络通常产生错误的结果 - 例如,这些网络的输入的小扰动可能导致严重的分类错误。近年来提出了许多验证方法,以证明没有此类错误,但这些通常用于完全连接的网络,并且在应用于卷积网络时遭受加剧的可扩展性问题。为了解决这一差距,我们在这里介绍了CNN-ABS框架,特别是旨在验证卷积网络。 CNN-ABS的核心是一种抽象细化技术,它通过拆除卷积连接,以便在这种方式创造原始问题的过度逼近来简化验证问题;如果产生的问题变得过于抽象,它会恢复这些连接。 CNN-ABS旨在使用现有的验证引擎作为后端,我们的评估表明它可以显着提高最先进的DNN验证引擎的性能,平均降低运行时间15.7%。
translated by 谷歌翻译
对象检测,车道检测和分割的卷积神经网络(CNN)现在坐在大多数自主管道的头部,然而,他们的安全分析仍然是一个重要的挑战。对感知模型的正式分析是根本困难的,因为他们的正确性是难以指定的,如果不是不可能指定。我们提出了一种从系统级安全要求,数据和从感知下游的模块的模块的识字模型推断出可理解和安全抽象的技术。该技术可以帮助在创建抽象和随后的验证方面进行权衡安全性,大小和精度。我们将该方法应用于基于高保真仿真(a)用于自主车辆的视觉的车道保持控制器的两个重要案例研究,并且(b)用于农业机器人的控制器。我们展示了所生成的抽象如何与下游模块组成,然后可以使用像CBMC等程序分析工具验证所产生的抽象系统。详细评估规模,安全要求和环境参数(例如,照明,路面,植物类型)对所产生的抽象精度的影响表明,该方法可以帮助指导寻找角落案例和安全操作包围。
translated by 谷歌翻译
从数据中学到的分类器越来越多地用作安全是关键问题的系统中的组件。在这项工作中,我们通过称为安全订购约束的约束来提出针对分类器的正式安全概念。这些限制条件将分类器输出的类输出的顺序与输入的条件有关,并且表达足以编码文献中分类器安全规范的各种有趣的示例。对于使用神经网络实施的分类器,我们还提出了一种运行时机制,用于执行安全订购约束。我们的方法基于一个自我校正层,该层可证明,无论分类器输入的特征如何,它都可以产生安全的输出。我们将此层与现有的神经网络分类器组成,以构建自我校正网络(SC-NET),并证明除了提供安全的输出外,SC-NET还可以保证尽可能保留原始网络的分类精度。我们的方法独立于用于分类的神经网络的大小和体系结构,仅取决于指定的属性和网络输出的尺寸;因此,它可扩展到大型最新网络。我们表明,我们的方法可以针对GPU进行优化,从而在当前硬件上引入了少于1ms的运行时开销 - 即使在包含数十万个神经元和数百万参数的大型,广泛使用的网络上。
translated by 谷歌翻译
关键应用程序中机器学习(ML)组件的集成引入了软件认证和验证的新挑战。正在开发新的安全标准和技术准则,以支持基于ML的系统的安全性,例如ISO 21448 SOTIF用于汽车域名,并保证机器学习用于自主系统(AMLAS)框架。 SOTIF和AMLA提供了高级指导,但对于每个特定情况,必须将细节凿出来。我们启动了一个研究项目,目的是证明开放汽车系统中ML组件的完整安全案例。本文报告说,Smikk的安全保证合作是由行业级别的行业合作的,这是一个基于ML的行人自动紧急制动示威者,在行业级模拟器中运行。我们演示了AMLA在伪装上的应用,以在简约的操作设计域中,即,我们为其基于ML的集成组件共享一个完整的安全案例。最后,我们报告了经验教训,并在开源许可下为研究界重新使用的开源许可提供了傻笑和安全案例。
translated by 谷歌翻译
我们提出了一种专注于水生导航的安全强化学习的新型基准环境。由于非静止的环境和机器人平台的不确定性,水生导航是一个极具挑战性的任务,因此通过分析训练有素的网络的行为来考虑问题的安全方面至关重要的问题,以避免危险情况(例如,碰撞)。为此,我们考虑基于价值和政策梯度的深度加强学习(DRL),我们提出了一种基于交叉的策略,将基于梯度和梯度的DRL结合以提高样品效率。此外,我们提出了一种基于间隔分析的验证策略,该验证策略检查培训模型在一组所需属性上的行为。我们的结果表明,基于交叉的培训优于先前的DRL方法,而我们的验证允许我们量化违反属性描述的行为的配置数。至关重要,这将作为该应用领域的未来研究的基准。
translated by 谷歌翻译
贝叶斯神经网络(BNNS)将分布放在神经网络的重量上,以模拟数据的不确定性和网络的预测。我们考虑在具有无限时间地平线系统的反馈循环中运行贝叶斯神经网络策略时验证安全的问题。与现有的基于样品的方法相比,这是不可用的无限时间地平线设置,我们训练一个单独的确定性神经网络,用作无限时间的地平线安全证书。特别是,我们证明证书网络保证了系统的安全性在BNN重量后部的子集上。我们的方法首先计算安全重量,然后改变BNN的重量后,以拒绝在该组外的样品。此外,我们展示了如何将我们的方法扩展到安全探索的强化学习环境,以避免在培训政策期间的不安全轨迹。我们在一系列加固学习基准上评估了我们的方法,包括非Lyapunovian安全规范。
translated by 谷歌翻译