深度神经网络(DNN)越来越多地用于安全至关重要的系统中,迫切需要保证其正确性。因此,验证社区设计了多种技术和工具来验证DNN。当DNN验证者发现触发错误的输入时,很容易确认;但是,当他们报告不存在错误时,就无法确保验证工具本身没有缺陷。由于在DNN验证工具中已经观察到了多个错误,因此这将DNN验证的适用性提出了质疑。在这项工作中,我们提出了一种具有证明生产能力的基于简单的DNN验证符的新型机制:产生易于检查的不可满足性的见证人,这证明了没有错误的情况。我们的证明生产是基于众所周知的Farkas引理的有效适应,并结合了处理分段线性函数和数值精确误差的机制。作为概念的证明,我们在Marabou DNN验证者之上实施了我们的技术。我们对避免空中碰撞的安全至关重要系统的评估表明,在几乎所有情况下,证明生产都成功了,只需要最小的开销。
translated by 谷歌翻译
Deep neural networks have emerged as a widely used and effective means for tackling complex, real-world problems. However, a major obstacle in applying them to safety-critical systems is the great difficulty in providing formal guarantees about their behavior. We present a novel, scalable, and efficient technique for verifying properties of deep neural networks (or providing counter-examples). The technique is based on the simplex method, extended to handle the non-convex Rectified Linear Unit (ReLU ) activation function, which is a crucial ingredient in many modern neural networks. The verification procedure tackles neural networks as a whole, without making any simplifying assumptions. We evaluated our technique on a prototype deep neural network implementation of the next-generation airborne collision avoidance system for unmanned aircraft (ACAS Xu). Results show that our technique can successfully prove properties of networks that are an order of magnitude larger than the largest networks verified using existing methods.
translated by 谷歌翻译
随着神经网络作为任务至关重要系统中组成部分的越来越多的整合,越来越需要确保它们满足各种安全性和livesice要求。近年来,已经提出了许多声音和完整的验证方法,但这些方法通常受到严重的可伸缩性限制。最近的工作提出了通过抽象 - 再填充功能增强这种验证技术的增强,这些功能已被证明可以提高可伸缩性:而不是验证大型且复杂的网络,而是验证者构造,然后验证一个较小的网络,其正确性意味着原始的正确性网络。这种方案的缺点是,如果验证较小的网络失败,则验证者需要执行改进步骤,以增加验证网络的大小,然后开始从SCRATCH验证新网络 - 有效地``'浪费''它的早期工作在验证较小的网络方面。在本文中,我们通过使用\ emph {残留推理}来提高基于抽象的神经网络验证的增强:在验证抽象网络时使用信息的过程,以加快对精制网络的验证。本质上,该方法允许验证者存储有关确保正确行为的搜索空间部分的信息,并允许其专注于可能发现错误的区域。我们实施了我们的方法,以扩展到Marabou验证者,并获得了有希望的结果。
translated by 谷歌翻译
由于它们在计算机视觉,图像处理和其他人领域的优异性能,卷积神经网络具有极大的普及。不幸的是,现在众所周知,卷积网络通常产生错误的结果 - 例如,这些网络的输入的小扰动可能导致严重的分类错误。近年来提出了许多验证方法,以证明没有此类错误,但这些通常用于完全连接的网络,并且在应用于卷积网络时遭受加剧的可扩展性问题。为了解决这一差距,我们在这里介绍了CNN-ABS框架,特别是旨在验证卷积网络。 CNN-ABS的核心是一种抽象细化技术,它通过拆除卷积连接,以便在这种方式创造原始问题的过度逼近来简化验证问题;如果产生的问题变得过于抽象,它会恢复这些连接。 CNN-ABS旨在使用现有的验证引擎作为后端,我们的评估表明它可以显着提高最先进的DNN验证引擎的性能,平均降低运行时间15.7%。
translated by 谷歌翻译
随着深度学习在关键任务系统中的越来越多的应用,越来越需要对神经网络的行为进行正式保证。确实,最近提出了许多用于验证神经网络的方法,但是这些方法通常以有限的可伸缩性或不足的精度而挣扎。许多最先进的验证方案中的关键组成部分是在网络中可以为特定输入域获得的神经元获得的值计算下限和上限 - 并且这些界限更紧密,验证的可能性越大,验证的可能性就越大。成功。计算这些边界的许多常见算法是符号结合传播方法的变化。其中,利用一种称为后替代的过程的方法特别成功。在本文中,我们提出了一种使背部替代产生更严格的界限的方法。为了实现这一目标,我们制定并最大程度地减少背部固定过程中发生的不精确错误。我们的技术是一般的,从某种意义上说,它可以将其集成到许多现有的符号结合的传播技术中,并且只有较小的修改。我们将方法作为概念验证工具实施,并且与执行背部替代的最先进的验证者相比,取得了有利的结果。
translated by 谷歌翻译
We present an approach for the verification of feed-forward neural networks in which all nodes have a piece-wise linear activation function. Such networks are often used in deep learning and have been shown to be hard to verify for modern satisfiability modulo theory (SMT) and integer linear programming (ILP) solvers.The starting point of our approach is the addition of a global linear approximation of the overall network behavior to the verification problem that helps with SMT-like reasoning over the network behavior. We present a specialized verification algorithm that employs this approximation in a search process in which it infers additional node phases for the non-linear nodes in the network from partial node phase assignments, similar to unit propagation in classical SAT solving. We also show how to infer additional conflict clauses and safe node fixtures from the results of the analysis steps performed during the search. The resulting approach is evaluated on collision avoidance and handwritten digit recognition case studies.
translated by 谷歌翻译
神经网络已广泛应用于垃圾邮件和网络钓鱼检测,入侵预防和恶意软件检测等安全应用程序。但是,这种黑盒方法通常在应用中具有不确定性和不良的解释性。此外,神经网络本身通常容易受到对抗攻击的影响。由于这些原因,人们对可信赖和严格的方法有很高的需求来验证神经网络模型的鲁棒性。对抗性的鲁棒性在处理恶意操纵输入时涉及神经网络的可靠性,是安全和机器学习中最热门的主题之一。在这项工作中,我们在神经网络的对抗性鲁棒性验证中调查了现有文献,并在机器学习,安全和软件工程领域收集了39项多元化研究工作。我们系统地分析了它们的方法,包括如何制定鲁棒性,使用哪种验证技术以及每种技术的优势和局限性。我们从正式验证的角度提供分类学,以全面理解该主题。我们根据财产规范,减少问题和推理策略对现有技术进行分类。我们还展示了使用样本模型在现有研究中应用的代表性技术。最后,我们讨论了未来研究的开放问题。
translated by 谷歌翻译
大多数-AT是确定联合正常形式(CNF)中输入$ N $的最低价公式的问题至少为2 ^ {n-1} $令人满意的作业。在对概率规划和推论复杂性的各种AI社区中,广泛研究了多数饱和问题。虽然大多数饱满为期40多年来,但自然变体的复杂性保持开放:大多数 - $ k $ SAT,其中输入CNF公式仅限于最多$ k $的子句宽度。我们证明,每辆$ k $,大多数 - $ k $ sat是在p的。事实上,对于任何正整数$ k $和ratic $ \ rho \ in(0,1)$ in(0,1)$与有界分比者,我们给出了算法这可以确定给定的$ k $ -cnf是否至少有$ \ rho \ cdot 2 ^ n $令人满意的分配,在确定性线性时间(而先前的最着名的算法在指数时间中运行)。我们的算法对计算复杂性和推理的复杂性具有有趣的积极影响,显着降低了相关问题的已知复杂性,例如E-Maj-$ K $ Sat和Maj-Maj- $ K $ Sat。在我们的方法中,通过提取在$ k $ -cnf的相应设置系统中发现的向日葵,可以通过提取向日葵来解决阈值计数问题的有效方法。我们还表明,大多数 - $ k $ sat的易腐烂性有些脆弱。对于密切相关的gtmajority-sat问题(我们询问给定公式是否超过2 ^ {n-1} $满足分配),这已知是pp-cleanting的,我们表明gtmajority-$ k $ sat在p for $ k \ le 3 $,但为$ k \ geq 4 $完成np-cleante。这些结果是违反直觉的,因为这些问题的“自然”分类将是PP完整性,因为GTMAJority的复杂性存在显着差异 - $ k $ SAT和MOSTION- $ K $ SAT为所有$ k \ ge 4 $。
translated by 谷歌翻译
当与分支和界限结合使用时,结合的传播方法是正式验证深神经网络(例如正确性,鲁棒性和安全性)的最有效方法之一。但是,现有作品无法处理在传统求解器中广泛接受的切割平面限制的一般形式,这对于通过凸出凸松弛的加强验证者至关重要。在本文中,我们概括了结合的传播程序,以允许添加任意切割平面的约束,包括涉及放宽整数变量的限制,这些变量未出现在现有的结合传播公式中。我们的广义结合传播方法GCP-crown为应用一般切割平面方法}开辟了一个机会进行神经网络验证,同时受益于结合传播方法的效率和GPU加速。作为案例研究,我们研究了由现成的混合整数编程(MIP)求解器生成的切割平面的使用。我们发现,MIP求解器可以生成高质量的切割平面,以使用我们的新配方来增强基于界限的验证者。由于以分支为重点的绑定传播程序和切削平面的MIP求解器可以使用不同类型的硬件(GPU和CPU)并行运行,因此它们的组合可以迅速探索大量具有强切割平面的分支,从而导致强大的分支验证性能。实验表明,与VNN-Comp 2021中最佳工具相比,我们的方法是第一个可以完全求解椭圆形的基准并验证椭圆21基准的两倍的验证者,并且在oval21基准测试中的最佳工具也明显超过了最先进的验证器。广泛的基准。 GCP-Crown是$ \ alpha $,$ \ beta $ -Crown验证者,VNN-COMP 2022获奖者的一部分。代码可在http://papercode.cc/gcp-crown上获得
translated by 谷歌翻译
决策树学习是机器学习中广泛使用的方法,在需要简洁明了的模型的应用中受到青睐。传统上,启发式方法用于快速生产具有相当高准确性的模型。然而,一个普遍的批评是,从精度和大小方面,所产生的树可能不一定是数据的最佳表示。近年来,这激发了最佳分类树算法的发展,这些算法与执行一系列本地最佳决策的启发式方法相比,在全球范围内优化决策树。我们遵循这一工作线,并提供了一种基于动态编程和搜索的最佳分类树的新颖算法。我们的算法支持对树的深度和节点数量的约束。我们方法的成功归因于一系列专门技术,这些技术利用了分类树独有的属性。传统上,最佳分类树的算法受到了高运行时的困扰和有限的可伸缩性,但我们在一项详细的实验研究中表明,我们的方法仅使用最先进的时间所需的时间,并且可以处理数十个数据集的数据集在数千个实例中,提供了几个数量级的改进,并特别有助于实现最佳决策树的实现。
translated by 谷歌翻译
最近,图形神经网络(GNN)已应用于群集上的调整工作,比手工制作的启发式方法更好地表现了。尽管表现令人印象深刻,但仍然担心这些基于GNN的工作调度程序是否满足用户对其他重要属性的期望,例如防止策略,共享激励和稳定性。在这项工作中,我们考虑对基于GNN的工作调度程序的正式验证。我们解决了几个特定领域的挑战,例如网络,这些挑战比验证图像和NLP分类器时遇到的更深层和规格更丰富。我们开发了拉斯维加斯,这是基于精心设计的算法,将这些调度程序的单步和多步属性验证的第一个通用框架,它们结合了抽象,改进,求解器和证明传输。我们的实验结果表明,与以前的方法相比,维加斯在验证基于GNN的调度程序的重要特性时会达到显着加速。
translated by 谷歌翻译
作为神经网络(NNS)越来越多地引入安全关键域,在部署之前越来越需要在部署之前正式验证NNS。在这项工作中,我们专注于NN等效的正式验证问题,其旨在证明两个NNS(例如原件和压缩版本)显示等效行为。已经提出了两种方法:混合整数线性编程和间隔传播。虽然第一种方法缺乏可扩展性,但后者仅适用于结构性相似的NN,其重量变化很小。我们纸张的贡献有四个部分。首先,我们通过证明epsilon-andatience问题是突出的,我们表现出理论结果。其次,我们扩展了Tran等人。单个NN几何路径枚举算法以多个NN的设置。在第三步中,我们实现了扩展算法,用于等价验证,评估其实际使用所需的优化。最后,我们执行比较评估,显示我们的方法优于前一种最先进的现有技术,两者,用于等效验证以及反例查找。
translated by 谷歌翻译
神经网络越来越依赖于复杂安全系统(例如自动驾驶汽车)的组成部分。对在更大的验证周期中嵌入神经网络验证的工具和方法的需求很高。但是,由于关注的广泛验证属性,很难进行神经网络验证,通常每个验证属性仅适用于专用求解器中的验证。在本文中,我们展示了最初设计用于验证,验证和仿真金融基础架构的功能编程语言的Imandra如何为神经网络验证提供整体基础架构。我们开发了一个新颖的图书馆Checkinn,该图书馆在Imandra的神经网络上形式化,并涵盖了神经网络验证的不同重要方面。
translated by 谷歌翻译
我们介绍了一种新颖的方法来对计算机程序进行自动终止分析:我们使用神经网络来表示排名功能。排名函数映射程序状态为从下面界限并随着程序运行而减小的值;排名函数的存在证明了程序终止。我们从程序的采样执行轨迹训练神经网络,以使网络的输出沿轨迹降低;然后,我们使用符号推理正式验证其对所有可能执行的概括。通过肯定的答案,我们获得了该计划的正式终止证书,我们称之为神经排名函数。我们证明,由于神经网络代表非线性功能的能力,我们的方法成功地超过了最先进工具的程序。这包括在其循环条件和包括非线性表达式的程序中使用析取的程序。
translated by 谷歌翻译
基于基于不完整的神经网络验证如冠的绑定传播非常有效,可以显着加速基于神经网络的分支和绑定(BAB)。然而,绑定的传播不能完全处理由昂贵的线性编程(LP)求解器的BAB常规引入的神经元分割限制,导致界限和损伤验证效率。在这项工作中,我们开发了一种基于$ \ beta $ -cra所做的,一种基于新的绑定传播方法,可以通过从原始或双空间构造的可优化参数$ \ beta $完全编码神经元分割。当在中间层中联合优化时,$ \ Beta $ -CROWN通常会产生比具有神经元分裂约束的典型LP验证更好的界限,同时像GPU上的皇冠一样高效且并行化。适用于完全稳健的验证基准,使用BAB的$ \ Beta $ -CROWN比基于LP的BAB方法快三个数量级,并且比所有现有方法更快,同时产生较低的超时率。通过早期终止BAB,我们的方法也可用于有效的不完整验证。与强大的不完整验证者相比,我们始终如一地在许多设置中获得更高的验证准确性,包括基于凸屏障破碎技术的验证技术。与最严重但非常昂贵的Semidefinite编程(SDP)的不完整验证者相比,我们获得了更高的验证精度,验证时间较少三个级。我们的算法授权$ \ alpha,\ \β$ -craft(Alpha-Beta-Crown)验证者,VNN-Comp 2021中的获胜工具。我们的代码可在http://papercode.cc/betacrown提供
translated by 谷歌翻译
在过去的十年中,神经网络(NNS)已被广泛用于许多应用程序,包括安全系统,例如自主系统。尽管采用了新兴的采用,但众所周知,NNS容易受到对抗攻击的影响。因此,提供确保此类系统正常工作的保证非常重要。为了解决这些问题,我们介绍了一个修复不安全NNS W.R.T.的框架。安全规范,即利用可满足的模型理论(SMT)求解器。我们的方法能够通过仅修改其重量值的一些重量值来搜索新的,安全的NN表示形式。此外,我们的技术试图最大程度地提高与原始网络在其决策边界方面的相似性。我们进行了广泛的实验,以证明我们提出的框架能够产生安全NNS W.R.T.的能力。对抗性的鲁棒性特性,只有轻度的准确性损失(就相似性而言)。此外,我们将我们的方法与天真的基线进行比较,以证明其有效性。总而言之,我们提供了一种算法以自动修复具有安全性的算法,并建议一些启发式方法以提高其计算性能。当前,通过遵循这种方法,我们能够产生由分段线性relu激活函数组成的小型(即具有多达数百个参数)的小型(即具有多达数百个参数)。然而,我们的框架是可以合成NNS W.R.T.的一般框架。一阶逻辑规范的任何可决定片段。
translated by 谷歌翻译
结构分解方法,例如普遍的高树木分解,已成功用于解决约束满意度问题(CSP)。由于可以重复使用分解以求解具有相同约束范围的CSP,因此即使计算本身很难,将资源投资于计算良好的分解是有益的。不幸的是,即使示波器仅略有变化,当前方法也需要计算全新的分解。在本文中,我们迈出了解决CSP $ P $分解的问题的第一步,以使其成为由$ P $修改产生的新CSP $ P'$的有效分解。即使从理论上讲问题很难,我们还是提出并实施了一个有效更新GHD的框架。我们算法的实验评估强烈提出了实际适用性。
translated by 谷歌翻译
域特异性启发式方法是有效解决组合问题的必不可少的技术。当前将特定于域的启发式方法与答案集编程(ASP)集成的方法在处理基于部分分配的非单调指定的启发式方法时,这是不令人满意的。例如,在挑选尚未放入垃圾箱中的物品时,这种启发式方法经常发生。因此,我们介绍了ASP中域特异性启发式方法声明性规范的新颖语法和语义。我们的方法支持启发式陈述,依赖于解决过程中所维持的部分任务,这是不可能的。我们在Alpha中提供了一种实现,该实现使Alpha成为第一个支持声明指定的域特定启发式方法的懒惰的ASP系统。使用两个实际的示例域来证明我们的提议的好处。此外,我们使用我们的方法用A*实施知情},该搜索首次在ASP中解决。 A*应用于两个进一步的搜索问题。实验证实,结合懒惰的ASP解决方案和我们的新型启发式方法对于解决工业大小的问题至关重要。
translated by 谷歌翻译
Cohn and Umans proposed a framework for developing fast matrix multiplication algorithms based on the embedding computation in certain groups algebras. In subsequent work with Kleinberg and Szegedy, they connected this to the search for combinatorial objects called strong uniquely solvable puzzles (strong USPs). We begin a systematic computer-aided search for these objects. We develop and implement constraint-based algorithms build on reductions to $\mathrm{SAT}$ and $\mathrm{IP}$ to verify that puzzles are strong USPs, and to search for large strong USPs. We produce tight bounds on the maximum size of a strong USP for width $k \le 5$, construct puzzles of small width that are larger than previous work, and improve the upper bounds on strong USP size for $k \le 12$. Although our work only deals with puzzles of small-constant width, the strong USPs we find imply matrix multiplication algorithms that run in $O(n^\omega)$ time with exponent $\omega \le 2.66$. While our algorithms do not beat the fastest algorithms, our work provides evidence and, perhaps, a path to finding families of strong USPs that imply matrix multiplication algorithms that are more efficient than those currently known.
translated by 谷歌翻译
深度神经网络的鲁棒性对于现代AI支持系统至关重要,应正式验证。在广泛的应用中采用了类似乙状结肠的神经网络。由于它们的非线性,通常会过度评估乙状结肠样激活功能,以进行有效的验证,这不可避免地引入了不精确度。已大量的努力致力于找到所谓的更紧密的近似值,以获得更精确的验证结果。但是,现有的紧密定义是启发式的,缺乏理论基础。我们对现有神经元的紧密表征进行了彻底的经验分析,并揭示它们仅在特定的神经网络上是优越的。然后,我们将网络紧密度的概念介绍为统一的紧密度定义,并表明计算网络紧密度是一个复杂的非convex优化问题。我们通过两个有效的,最紧密的近似值从不同的角度绕过复杂性。结果表明,我们在艺术状态下的方法实现了有希望的表现:(i)达到高达251.28%的改善,以提高认证的较低鲁棒性界限; (ii)在卷积网络上表现出更为精确的验证结果。
translated by 谷歌翻译