图表卷积网络在基于图形的半监督学习方面取得了很大进展。现有方法主要假设通过图形边缘连接的节点容易具有相似的属性和标签,因此由本地图形结构平滑的特征可以揭示类相似性。然而,在许多真实情景中的图形结构和标签之间经常存在不匹配,其中结构可以传播最终影响模型性能的误导性功能或标签。在本文中,我们提出了一种多任务的自蒸馏框架,将自我监督的学习和自蒸煮注入图形卷积网络中,以分别地解决结构侧和标签侧的不匹配问题。首先,我们基于预先文本任务制定自我监督管道,以捕获图表中的不同程度的相似性。鼓励特征提取过程通过联合优化预文本任务和目标任务来捕获更复杂的接近。因此,从结构侧提高了本地特征聚合。其次,自蒸馏使用模型本身的软标签作为额外的监督,这与标签平滑有类似的效果。从分类管道和自我监督管道的知识共同蒸馏,以改善来自标签侧的模型的泛化能力。实验结果表明,该方法在几种经典图卷积架构下获得了显着性能增益。
translated by 谷歌翻译
由于学术和工业领域的异质图无处不在,研究人员最近提出了许多异质图神经网络(HGNN)。在本文中,我们不再采用更强大的HGNN模型,而是有兴趣设计一个多功能的插件模块,该模块解释了从预先训练的HGNN中提取的关系知识。据我们所知,我们是第一个在异质图上提出高阶(雇用)知识蒸馏框架的人,无论HGNN的模型体系结构如何,它都可以显着提高预测性能。具体而言,我们的雇用框架最初执行一阶节点级知识蒸馏,该蒸馏曲线及其预测逻辑编码了老师HGNN的语义。同时,二阶关系级知识蒸馏模仿了教师HGNN生成的不同类型的节点嵌入之间的关系相关性。在各种流行的HGNN模型和三个现实世界的异质图上进行了广泛的实验表明,我们的方法获得了一致且相当大的性能增强,证明了其有效性和泛化能力。
translated by 谷歌翻译
众所周知,图形神经网络(GNN)的成功高度依赖于丰富的人类通知数据,这在实践中努力获得,并且并非总是可用的。当只有少数标记的节点可用时,如何开发高效的GNN仍在研究。尽管已证明自我训练对于半监督学习具有强大的功能,但其在图形结构数据上的应用可能会失败,因为(1)不利用较大的接收场来捕获远程节点相互作用,这加剧了传播功能的难度 - 标记节点到未标记节点的标签模式; (2)有限的标记数据使得在不同节点类别中学习良好的分离决策边界而不明确捕获基本的语义结构,这是一项挑战。为了解决捕获信息丰富的结构和语义知识的挑战,我们提出了一个新的图数据增强框架,AGST(增强图自训练),该框架由两个新的(即结构和语义)增强模块构建。 GST骨干。在这项工作中,我们研究了这个新颖的框架是否可以学习具有极有限标记节点的有效图预测模型。在有限标记节点数据的不同情况下,我们对半监督节点分类进行全面评估。实验结果证明了新的数据增强框架对节点分类的独特贡献,几乎没有标记的数据。
translated by 谷歌翻译
属性网络上的节点分类是一项半监督任务,对于网络分析至关重要。通过将图形卷积网络(GCN)中的两个关键操作解耦,即具有转换和邻域聚合,截断的GCN的一些最新作品可以支持这些信息,以更深入地传播并实现高级性能。但是,它们遵循GCN的传统结构感知的传播策略,因此很难捕获节点的属性相关性,并对由两个端点属于不同类别的边缘描述的结构噪声敏感。为了解决这些问题,我们提出了一种新方法,称为“裂开式”传播,然后训练(PAMT)。关键思想是将属性相似性掩码整合到结构感知的传播过程中。这样,PAMT可以在传播过程中保留相邻节点的属性相关性,并有效地减少结构噪声的影响。此外,我们开发了一种迭代改进机制,以在改善培训性能的培训过程中更新相似性面罩。在四个现实世界数据集上进行的广泛实验证明了PAMT的出色性能和鲁棒性。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been a prevailing technique for tackling various analysis tasks on graph data. A key premise for the remarkable performance of GNNs relies on complete and trustworthy initial graph descriptions (i.e., node features and graph structure), which is often not satisfied since real-world graphs are often incomplete due to various unavoidable factors. In particular, GNNs face greater challenges when both node features and graph structure are incomplete at the same time. The existing methods either focus on feature completion or structure completion. They usually rely on the matching relationship between features and structure, or employ joint learning of node representation and feature (or structure) completion in the hope of achieving mutual benefit. However, recent studies confirm that the mutual interference between features and structure leads to the degradation of GNN performance. When both features and structure are incomplete, the mismatch between features and structure caused by the missing randomness exacerbates the interference between the two, which may trigger incorrect completions that negatively affect node representation. To this end, in this paper we propose a general GNN framework based on teacher-student distillation to improve the performance of GNNs on incomplete graphs, namely T2-GNN. To avoid the interference between features and structure, we separately design feature-level and structure-level teacher models to provide targeted guidance for student model (base GNNs, such as GCN) through distillation. Then we design two personalized methods to obtain well-trained feature and structure teachers. To ensure that the knowledge of the teacher model is comprehensively and effectively distilled to the student model, we further propose a dual distillation mode to enable the student to acquire as much expert knowledge as possible.
translated by 谷歌翻译
知识蒸馏最近成为一种流行的技术,以改善卷积神经网络的模型泛化能力。然而,它对图形神经网络的影响小于令人满意的,因为图形拓扑和节点属性可能以动态方式改变,并且在这种情况下,静态教师模型引导学生培训不足。在本文中,我们通过在在线蒸馏时期同时培训一组图形神经网络来解决这一挑战,其中组知识发挥作用作为动态虚拟教师,并且有效地捕获了图形神经网络的结构变化。为了提高蒸馏性能,在学生之间转移两种知识,以增强彼此:在图形拓扑和节点属性中反映信息的本地知识,以及反映课程预测的全局知识。随着香草知识蒸馏等,在利用有效的对抗性循环学习框架,将全球知识与KL分歧转移。广泛的实验验证了我们提出的在线对抗蒸馏方法的有效性。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied in the semi-supervised node classification task, where a key point lies in how to sufficiently leverage the limited but valuable label information. Most of the classical GNNs solely use the known labels for computing the classification loss at the output. In recent years, several methods have been designed to additionally utilize the labels at the input. One part of the methods augment the node features via concatenating or adding them with the one-hot encodings of labels, while other methods optimize the graph structure by assuming neighboring nodes tend to have the same label. To bring into full play the rich information of labels, in this paper, we present a label-enhanced learning framework for GNNs, which first models each label as a virtual center for intra-class nodes and then jointly learns the representations of both nodes and labels. Our approach could not only smooth the representations of nodes belonging to the same class, but also explicitly encode the label semantics into the learning process of GNNs. Moreover, a training node selection technique is provided to eliminate the potential label leakage issue and guarantee the model generalization ability. Finally, an adaptive self-training strategy is proposed to iteratively enlarge the training set with more reliable pseudo labels and distinguish the importance of each pseudo-labeled node during the model training process. Experimental results on both real-world and synthetic datasets demonstrate our approach can not only consistently outperform the state-of-the-arts, but also effectively smooth the representations of intra-class nodes.
translated by 谷歌翻译
图表神经网络(GNNS)在半监督学习场景中取得了显着的成功。图形神经网络中的消息传递机制有助于未标记的节点收集标记邻居的监督信号。在这项工作中,我们调查了一项广泛采用的半监督学习方法之一的一致性正则化的一致性,可以帮助提高图形神经网络的性能。我们重新审视图形神经网络的两种一致性正则化方法。一个是简单的一致性正则化(SCR),另一个是均值是均值 - 教师一致性正则化(MCR)。我们将一致性正则化方法与两个最先进的GNN结合起来并在OGBN-Products数据集上进行实验。通过一致性正常化,可以在具有和无外数据的OGBN-Products数据集中提高最先进的GNN的性能0.3%。
translated by 谷歌翻译
灵感来自深度学习的广泛成功,已经提出了图表神经网络(GNNS)来学习表达节点表示,并在各种图形学习任务中表现出有希望的性能。然而,现有的努力主要集中在提供相对丰富的金色标记节点的传统半监督设置。虽然数据标签是难以忍受的事实令人生畏的事实并且需要强化领域知识,但特别是在考虑图形结构数据的异质性时,它通常是不切实际的。在几次半监督的环境下,大多数现有GNN的性能不可避免地受到过度装备和过天际问题的破坏,在很大程度上由于标记数据的短缺。在本文中,我们提出了一种配备有新型元学习算法的解耦的网络架构来解决这个问题。从本质上讲,我们的框架META-PN通过META学习的标签传播策略在未标记节点上乘坐高质量的伪标签,这有效增强了稀缺标记的数据,同时在培训期间启用大型接受领域。广泛的实验表明,与各种基准数据集上的现有技术相比,我们的方法提供了简单且实质性的性能。
translated by 谷歌翻译
Recent years have witnessed great success in handling graph-related tasks with Graph Neural Networks (GNNs). Despite their great academic success, Multi-Layer Perceptrons (MLPs) remain the primary workhorse for practical industrial applications. One reason for this academic-industrial gap is the neighborhood-fetching latency incurred by data dependency in GNNs, which make it hard to deploy for latency-sensitive applications that require fast inference. Conversely, without involving any feature aggregation, MLPs have no data dependency and infer much faster than GNNs, but their performance is less competitive. Motivated by these complementary strengths and weaknesses, we propose a Graph Self-Distillation on Neighborhood (GSDN) framework to reduce the gap between GNNs and MLPs. Specifically, the GSDN framework is based purely on MLPs, where structural information is only implicitly used as prior to guide knowledge self-distillation between the neighborhood and the target, substituting the explicit neighborhood information propagation as in GNNs. As a result, GSDN enjoys the benefits of graph topology-awareness in training but has no data dependency in inference. Extensive experiments have shown that the performance of vanilla MLPs can be greatly improved with self-distillation, e.g., GSDN improves over stand-alone MLPs by 15.54\% on average and outperforms the state-of-the-art GNNs on six datasets. Regarding inference speed, GSDN infers 75X-89X faster than existing GNNs and 16X-25X faster than other inference acceleration methods.
translated by 谷歌翻译
知识蒸馏(KD)证明了其有效性,可以提高图形神经网络(GNN)的性能,其目标是将知识从更深的教师gnn蒸馏成较浅的学生GNN。但是,由于众所周知的过度参数和过度光滑的问题,实际上很难培训令人满意的教师GNN,从而导致实际应用中的知识转移无效。在本文中,我们通过对GNN的加强学习(称为FreeKD)提出了第一个自由方向知识蒸馏框架,而这不再需要提供更深入的良好优化的教师GNN。我们工作的核心思想是协作建立两个较浅的GNN,以通过以层次结构方式通过加强学习来交流知识。正如我们观察到的一个典型的GNN模型在训练过程中通常在不同节点的表现更好,更差的表现,我们设计了一种动态和自由方向的知识转移策略,该策略由两个级别的动作组成:1)节点级别的动作决定了知识的方向。两个网络的相应节点之间的传输;然后2)结构级的动作确定了要传播的节点级别生成的局部结构。从本质上讲,我们的FreeKD是一个一般且原则性的框架,可以自然与不同架构的GNN兼容。在五个基准数据集上进行的广泛实验表明,我们的FreeKD在很大的边距上优于两个基本GNN,并显示了其对各种GNN的功效。更令人惊讶的是,我们的FreeKD比传统的KD算法具有可比性甚至更好的性能,这些KD算法将知识从更深,更强大的教师GNN中提取。
translated by 谷歌翻译
图形神经网络(GNNS)在学习归属图中显示了很大的力量。但是,GNNS从源节点利用遥控器的信息仍然是一个挑战。此外,常规GNN要求将图形属性作为输入,因此它们无法应用于纯图。在论文中,我们提出了名为G-GNNS(GNN的全局信息)的新模型来解决上述限制。首先,通过无监督的预训练获得每个节点的全局结构和属性特征,其保留与节点相关联的全局信息。然后,使用全局功能和原始网络属性,我们提出了一个并行GNN的并行框架来了解这些功能的不同方面。所提出的学习方法可以应用于普通图和归属图。广泛的实验表明,G-GNNS可以在三个标准评估图上优于其他最先进的模型。特别是,我们的方法在学习归属图表时建立了Cora(84.31 \%)和PubMed(80.95 \%)的新基准记录。
translated by 谷歌翻译
本文研究了用于无监督场景的图形神经网络(GNN)的节点表示。具体地,我们推导了理论分析,并在不适当定义的监督信号时,在不同的图形数据集中提供关于GNN的非稳定性能的实证演示。 GNN的性能取决于节点特征平滑度和图形结构的局部性。为了平滑通过图形拓扑和节点功能测量的节点接近度的差异,我们提出了帆 - 一个小说\下划线{s} elf- \下划线{a} u段图对比度\下划线{i} ve \ nignline {l}收入框架,使用两个互补的自蒸馏正则化模块,\ emph {Ie},内部和图间知识蒸馏。我们展示了帆在各种图形应用中的竞争性能。即使使用单个GNN层,Sail也在各种基准数据集中持续竞争或更好的性能,与最先进的基线相比。
translated by 谷歌翻译
关于图表的深度学习最近吸引了重要的兴趣。然而,大多数作品都侧重于(半)监督学习,导致缺点包括重标签依赖,普遍性差和弱势稳健性。为了解决这些问题,通过良好设计的借口任务在不依赖于手动标签的情况下提取信息知识的自我监督学习(SSL)已成为图形数据的有希望和趋势的学习范例。与计算机视觉和自然语言处理等其他域的SSL不同,图表上的SSL具有独家背景,设计理念和分类。在图表的伞下自我监督学习,我们对采用图表数据采用SSL技术的现有方法及时及全面的审查。我们构建一个统一的框架,数学上正式地规范图表SSL的范例。根据借口任务的目标,我们将这些方法分为四类:基于生成的,基于辅助性的,基于对比的和混合方法。我们进一步描述了曲线图SSL在各种研究领域的应用,并总结了绘图SSL的常用数据集,评估基准,性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
translated by 谷歌翻译
图形神经网络(GNN)在许多基于图的任务中表现出强大的表示能力。具体而言,由于其简单性和性能优势,GNN(例如APPNP)的解耦结构变得流行。但是,这些GNN的端到端培训使它们在计算和记忆消耗方面效率低下。为了应对这些局限性,在这项工作中,我们为图形神经网络提供了交替的优化框架,不需要端到端培训。在不同设置下进行的广泛实验表明,所提出的算法的性能与现有的最新算法相当,但具有更好的计算和记忆效率。此外,我们表明我们的框架可以利用优势来增强现有的脱钩GNN。
translated by 谷歌翻译
尽管图表学习(GRL)取得了重大进展,但要以足够的方式提取和嵌入丰富的拓扑结构和特征信息仍然是一个挑战。大多数现有方法都集中在本地结构上,并且无法完全融合全球拓扑结构。为此,我们提出了一种新颖的结构保留图表学习(SPGRL)方法,以完全捕获图的结构信息。具体而言,为了减少原始图的不确定性和错误信息,我们通过k-nearest邻居方法构建了特征图作为互补视图。该特征图可用于对比节点级别以捕获本地关系。此外,我们通过最大化整个图形和特征嵌入的相互信息(MI)来保留全局拓扑结构信息,从理论上讲,该信息可以简化为交换功能的特征嵌入和原始图以重建本身。广泛的实验表明,我们的方法在半监督节点分类任务上具有相当出色的性能,并且在图形结构或节点特征上噪声扰动下的鲁棒性出色。
translated by 谷歌翻译
鉴于在现实世界应用中大规模图的流行率,训练神经模型的存储和时间引起了人们的关注。为了减轻关注点,我们提出和研究图形神经网络(GNNS)的图形凝结问题。具体而言,我们旨在将大型原始图凝结成一个小的,合成的和高度信息的图,以便在小图和大图上训练的GNN具有可比性的性能。我们通过优化梯度匹配损失并设计一种凝结节点期货和结构信息的策略来模仿原始图上的GNN训练轨迹,以解决凝结问题。广泛的实验证明了所提出的框架在将不同的图形数据集凝结成信息较小的较小图中的有效性。特别是,我们能够在REDDIT上近似于95.3%的原始测试准确性,Flickr的99.8%和CiteSeer的99.0%,同时将其图形尺寸降低了99.9%以上,并且可以使用冷凝图来训练各种GNN架构Code在https://github.com/chandlerbang/gcond上发布。
translated by 谷歌翻译
Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data. Recently, GCNs and subsequent variants have shown superior performance in various application areas on real-world datasets. Despite their success, most of the current GCN models are shallow, due to the over-smoothing problem.In this paper, we study the problem of designing and analyzing deep graph convolutional networks. We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques: Initial residual and Identity mapping. We provide theoretical and empirical evidence that the two techniques effectively relieves the problem of over-smoothing. Our experiments show that the deep GCNII model outperforms the state-of-the-art methods on various semi-and fullsupervised tasks. Code is available at https: //github.com/chennnM/GCNII.
translated by 谷歌翻译
图形神经网络(GNNS)在提供图形结构时良好工作。但是,这种结构可能并不总是在现实世界应用中可用。该问题的一个解决方案是推断任务特定的潜在结构,然后将GNN应用于推断的图形。不幸的是,可能的图形结构的空间与节点的数量超级呈指数,因此任务特定的监督可能不足以学习结构和GNN参数。在这项工作中,我们提出了具有自我监督或拍打的邻接和GNN参数的同时学习,这是通过自我监督来推断图形结构的更多监督的方法。一个综合实验研究表明,缩小到具有数十万个节点的大图和胜过了几种模型,以便在已建立的基准上学习特定于任务的图形结构。
translated by 谷歌翻译
本文提出了FLGC,这是一个简单但有效的全线性图形卷积网络,用于半监督和无人监督的学习。基于计算具有解耦步骤的全局最优闭合液解决方案而不是使用梯度下降,而不是使用梯度下降。我们展示(1)FLGC强大的是处理图形结构化数据和常规数据,(2)具有闭合形式解决方案的训练图卷积模型提高了计算效率而不会降低性能,而(3)FLGC作为自然概括非欧几里德域的经典线性模型,例如Ridge回归和子空间聚类。此外,我们通过引入初始剩余策略来实现半监督的FLGC和无监督的FLGC,使FLGC能够聚集长距离邻域并减轻过平滑。我们将我们的半监督和无人监督的FLGC与各种分类和聚类基准的许多最先进的方法进行比较,表明建议的FLGC模型在准确性,鲁棒性和学习效率方面始终如一地优于先前的方法。我们的FLGC的核心代码在https://github.com/angrycai/flgc下发布。
translated by 谷歌翻译