磁共振光谱成像(MRSI)是研究人体代谢活动的宝贵工具,但目前的应用仅限于低空间分辨率。现有的基于深度学习的MRSI超分辨率方法需要培训一个单独的网络,为每个升级因素训练,这是耗时的,并且记忆力低下。我们使用过滤器缩放策略来解决这个多尺度的超分辨率问题,该级别的缩放策略根据升级因素调节卷积过滤器,以便可以将单个网络用于各种高尺度因素。观察每个代谢物具有不同的空间特征,我们还根据特定的代谢产物调节网络。此外,我们的网络基于对抗损失的重量,因此可以在单个网络中调整超级分辨代谢图的感知清晰度。我们使用新型的多条件模块结合了这些网络条件。实验是在15名高级神经胶质瘤患者的1H-MRSI数据集上进行的。结果表明,所提出的网络在多种多尺度超分辨率方法中实现了最佳性能,并且可以提供具有可调清晰度的超级分辨代谢图。
translated by 谷歌翻译
磁共振光谱成像(MRSI)是量化体内代谢物的必不可少的工具,但是低空间分辨率限制了其临床应用。基于深度学习的超分辨率方法为改善MRSI的空间分辨率提供了有希望的结果,但是与实验获得的高分辨率图像相比,超级分辨图像通常是模糊的。已经使用生成对抗网络进行了尝试,以提高图像视觉质量。在这项工作中,我们考虑了另一种类型的生成模型,即基于流的模型,与对抗网络相比,训练更稳定和可解释。具体而言,我们提出了一个基于流动的增强器网络,以提高超分辨率MRSI的视觉质量。与以前的基于流的模型不同,我们的增强器网络包含了来自其他图像模式(MRI)的解剖信息,并使用可学习的基础分布。此外,我们施加指南丢失和数据一致性丢失,以鼓励网络在保持高忠诚度的同时以高视觉质量生成图像。从25名高级神经胶质瘤患者获得的1H-MRSI数据集上进行的实验表明,我们的增强子网络的表现优于对抗网络和基线基线方法。我们的方法还允许视觉质量调整和不确定性估计。
translated by 谷歌翻译
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In MRI, restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3D HR image acquisition typically requests long scan time and, results in small spatial coverage and low SNR. Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR-LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
translated by 谷歌翻译
缩短采集时间和减少动作伪影是磁共振成像中最重要的两个问题。作为一个有前途的解决方案,已经研究了基于深度学习的高质量MR图像恢复,以产生从缩短采集时间获取的较低分辨率图像的更高分辨率和自由运动伪影图像,而不降低额外的获取时间或修改脉冲序列。然而,仍有许多问题仍然存在,以防止深度学习方法在临床环境中变得实用。具体而言,大多数先前的作品专注于网络模型,但忽略了各种下采样策略对采集时间的影响。此外,长推理时间和高GPU消耗也是瓶颈,以便在诊所部署大部分产品。此外,先验研究采用回顾性运动伪像产生随机运动,导致运动伪影的无法控制的严重程度。更重要的是,医生不确定生成的MR图像是否值得信赖,使诊断困难。为了克服所有这些问题,我们雇用了一个统一的2D深度学习神经网络,用于3D MRI超级分辨率和运动伪影,展示这种框架可以在3D MRI恢复任务中实现更好的性能与最艺术方法的其他状态,并且仍然存在GPU消耗和推理时间明显低,从而更易于部署。我们还基于加速度分析了几种下式采样策略,包括在平面内和穿过平面下采样的多种组合,并开发了一种可控和可量化的运动伪影生成方法。最后,计算并用于估计生成图像的准确性的像素 - 明智的不确定性,提供可靠诊断的附加信息。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
具有高分辨率的视网膜光学相干断层扫描术(八八)对于视网膜脉管系统的定量和分析很重要。然而,八颗图像的分辨率与相同采样频率的视野成反比,这不利于临床医生分析较大的血管区域。在本文中,我们提出了一个新型的基于稀疏的域适应超分辨率网络(SASR),以重建现实的6x6 mm2/低分辨率/低分辨率(LR)八八粒图像,以重建高分辨率(HR)表示。更具体地说,我们首先对3x3 mm2/高分辨率(HR)图像进行简单降解,以获得合成的LR图像。然后,采用一种有效的注册方法在6x6 mm2图像中以其相应的3x3 mm2图像区域注册合成LR,以获得裁切的逼真的LR图像。然后,我们提出了一个多级超分辨率模型,用于对合成数据进行全面监督的重建,从而通过生成的对流策略指导现实的LR图像重建现实的LR图像,该策略允许合成和现实的LR图像可以在特征中统一。领域。最后,新型的稀疏边缘感知损失旨在动态优化容器边缘结构。在两个八八集中进行的广泛实验表明,我们的方法的性能优于最先进的超分辨率重建方法。此外,我们还研究了重建结果对视网膜结构分割的性能,这进一步验证了我们方法的有效性。
translated by 谷歌翻译
Low-field (LF) MRI scanners have the power to revolutionize medical imaging by providing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usually significantly noisier and lower quality than their high-field counterparts. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans to improve diagnostic capability. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested deep learning methods with an average PSNR of 78.83 and SSIM of 0.9551. We tested our network on artificial noisy downsampled synthetic data from a major T1 weighted MRI image dataset called the T1-mix dataset. One board-certified radiologist scored 25 images on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). We also introduce a new type of loss function called natural log mean squared error (NLMSE). In conclusion, we present a more accurate deep learning method for single image super-resolution applied to synthetic low-field MRI via a Nested U-Net architecture.
translated by 谷歌翻译
Because of the necessity to obtain high-quality images with minimal radiation doses, such as in low-field magnetic resonance imaging, super-resolution reconstruction in medical imaging has become more popular (MRI). However, due to the complexity and high aesthetic requirements of medical imaging, image super-resolution reconstruction remains a difficult challenge. In this paper, we offer a deep learning-based strategy for reconstructing medical images from low resolutions utilizing Transformer and Generative Adversarial Networks (T-GAN). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like PSNR and SSIM, our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
使用卷积神经网络(CNN)的最先进的磁共振(MR)图像超分辨率方法(ISR)由于CNN的空间覆盖率有限,因此在有限的上下文信息中利用有限的上下文信息。Vision Transformers(VIT)学习更好的全球环境,这有助于产生优质的HR图像。我们将CNN的本地信息和来自VIT的全局信息结合在一起,以获得图像超级分辨率和输出超级分辨率的图像,这些图像的质量比最先进的方法所产生的质量更高。我们通过多个新颖的损失函数包括额外的约束,这些损失功能将结构和纹理信息从低分辨率到高分辨率图像。
translated by 谷歌翻译
近年来,使用基于深入学习的架构的状态,在图像超分辨率的任务中有几个进步。先前发布的许多基于超分辨率的技术,需要高端和顶部的图形处理单元(GPU)来执行图像超分辨率。随着深度学习方法的进步越来越大,神经网络已经变得越来越多地计算饥饿。我们返回了一步,并专注于创建实时有效的解决方案。我们提出了一种在其内存足迹方面更快更小的架构。所提出的架构使用深度明智的可分离卷积来提取特征,并且它与其他超分辨率的GAN(生成对抗网络)进行接受,同时保持实时推断和低存储器占用。即使在带宽条件不佳,实时超分辨率也能够流式传输高分辨率介质内容。在维持准确性和延迟之间的有效权衡之间,我们能够生产可比较的性能模型,该性能模型是超分辨率GAN的大小的一个 - 八(1/8),并且计算的速度比超分辨率的GAN快74倍。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
联合超分辨率和反音调映射(SR-ITM)旨在提高具有分辨率和动态范围具有质量缺陷的视频的视觉质量。当使用4K高动态范围(HDR)电视来观看低分辨率标准动态范围(LR SDR)视频时,就会出现此问题。以前依赖于学习本地信息的方法通常在保留颜色合规性和远程结构相似性方面做得很好,从而导致了不自然的色彩过渡和纹理伪像。为了应对这些挑战,我们建议联合SR-ITM的全球先验指导的调制网络(GPGMNET)。特别是,我们设计了一个全球先验提取模块(GPEM),以提取颜色合规性和结构相似性,分别对ITM和SR任务有益。为了进一步利用全球先验并保留空间信息,我们使用一些用于中间特征调制的参数,设计多个全球先验的指导空间调制块(GSMB),其中调制参数由共享的全局先验和空间特征生成来自空间金字塔卷积块(SPCB)的地图。通过这些精心设计的设计,GPGMNET可以通过较低的计算复杂性实现更高的视觉质量。广泛的实验表明,我们提出的GPGMNET优于最新方法。具体而言,我们提出的模型在PSNR中超过了0.64 dB的最新模型,其中69 $ \%$ $ $较少,3.1 $ \ times $ speedup。该代码将很快发布。
translated by 谷歌翻译
具有高分辨率(HR)的磁共振成像(MRI)提供了更详细的信息,以进行准确的诊断和定量图像分析。尽管取得了重大进展,但大多数现有的医学图像重建网络都有两个缺陷:1)所有这些缺陷都是在黑盒原理中设计的,因此缺乏足够的解释性并进一步限制其实际应用。可解释的神经网络模型引起了重大兴趣,因为它们在处理医学图像时增强了临床实践所需的可信赖性。 2)大多数现有的SR重建方法仅使用单个对比度或使用简单的多对比度融合机制,从而忽略了对SR改进至关重要的不同对比度之间的复杂关系。为了解决这些问题,在本文中,提出了一种新颖的模型引导的可解释的深层展开网络(MGDUN),用于医学图像SR重建。模型引导的图像SR重建方法求解手动设计的目标函数以重建HR MRI。我们通过将MRI观察矩阵和显式多对比度关系矩阵考虑到末端到端优化期间,将迭代的MGDUN算法展示为新型模型引导的深层展开网络。多对比度IXI数据集和Brats 2019数据集进行了广泛的实验,证明了我们提出的模型的优势。
translated by 谷歌翻译
单像超分辨率可以在需要可靠的视觉流以监视任务,处理远程操作或研究相关视觉细节的环境中支持机器人任务。在这项工作中,我们为实时超级分辨率提出了一个有效的生成对抗网络模型。我们采用了原始SRGAN的量身定制体系结构和模型量化,以提高CPU和Edge TPU设备上的执行,最多达到200 fps的推断。我们通过将其知识提炼成较小版本的网络,进一步优化我们的模型,并与标准培训方法相比获得显着的改进。我们的实验表明,与较重的最新模型相比,我们的快速和轻量级模型可保持相当令人满意的图像质量。最后,我们对图像传输进行带宽降解的实验,以突出提出的移动机器人应用系统的优势。
translated by 谷歌翻译
现实的高光谱图像(HSI)超分辨率(SR)技术旨在从其低分辨率(LR)对应物中产生具有更高光谱和空间忠诚的高分辨率(HR)HSI。生成的对抗网络(GAN)已被证明是图像超分辨率的有效深入学习框架。然而,现有GaN的模型的优化过程经常存在模式崩溃问题,导致光谱间不变重建容量有限。这可能导致所生成的HSI上的光谱空间失真,尤其是具有大的升级因子。为了缓解模式崩溃的问题,这项工作提出了一种与潜在编码器(Le-GaN)耦合的新型GaN模型,其可以将产生的光谱空间特征从图像空间映射到潜在空间并产生耦合组件正规化生成的样本。基本上,我们将HSI视为嵌入在潜在空间中的高维歧管。因此,GaN模型的优化被转换为学习潜在空间中的高分辨率HSI样本的分布的问题,使得产生的超分辨率HSI的分布更接近其原始高分辨率对应物的那些。我们对超级分辨率的模型性能进行了实验评估及其在缓解模式崩溃中的能力。基于具有不同传感器(即Aviris和UHD-185)的两种实际HSI数据集进行了测试和验证,用于各种升高因素并增加噪声水平,并与最先进的超分辨率模型相比(即Hyconet,LTTR,Bagan,SR-GaN,Wgan)。
translated by 谷歌翻译
由于受试者辍学或扫描失败,在纵向研究中不可避免地扫描是不可避免的。在本文中,我们提出了一个深度学习框架,以预测获得的扫描中缺少扫描,从而迎合纵向婴儿研究。由于快速的对比和结构变化,特别是在生命的第一年,对婴儿脑MRI的预测具有挑战性。我们引入了值得信赖的变质生成对抗网络(MGAN),用于将婴儿脑MRI从一个时间点转换为另一个时间点。MGAN具有三个关键功能:(i)图像翻译利用空间和频率信息以进行详细信息提供映射;(ii)将注意力集中在具有挑战性地区的质量指导学习策略。(iii)多尺度杂种损失函数,可改善组织对比度和结构细节的翻译。实验结果表明,MGAN通过准确预测对比度和解剖学细节来优于现有的gan。
translated by 谷歌翻译
在相应的辅助对比的指导下,目标对比度的超级分辨磁共振(MR)图像(提供了其他解剖信息)是快速MR成像的新解决方案。但是,当前的多对比超分辨率(SR)方法倾向于直接连接不同的对比度,从而忽略了它们在不同的线索中的关系,例如在高强度和低强度区域中。在这项研究中,我们提出了一个可分离的注意网络(包括高强度的优先注意力和低强度分离注意力),名为SANET。我们的卫生网可以借助辅助对比度探索“正向”和“反向”方向中高强度和低强度区域的区域,同时学习目标对比MR的SR的更清晰的解剖结构和边缘信息图片。 SANET提供了三个吸引人的好处:(1)这是第一个探索可分离的注意机制的模型,该机制使用辅助对比来预测高强度和低强度区域,将更多的注意力转移到精炼这些区域和这些区域之间的任何不确定细节和纠正重建结果中的细小区域。 (2)提出了一个多阶段集成模块,以学习多个阶段的多对比度融合的响应,获得融合表示之间的依赖性,并提高其表示能力。 (3)在FastMRI和Clinical \ textit {in Vivo}数据集上进行了各种最先进的多对比度SR方法的广泛实验,证明了我们模型的优势。
translated by 谷歌翻译
超级分辨率是一个不良问题,其中基本真理的高分辨率图像仅代表合理解决方案的空间中的一种可能性。然而,主导范式是采用像素 - 明智的损失,例如L_1,其驱动预测模糊的平均值。当与对抗性损失相结合时,这导致了根本相互矛盾的目标,这降低了最终质量。我们通过重新审视L_1丢失来解决此问题,并表明它对应于单层条件流程。灵感来自这一关系,我们探讨了一般流动作为L_1目标的忠诚替代品。我们证明,在与对抗性损失结合时,更深流量的灵活性导致更好的视觉质量和一致性。我们对三个数据集和比例因子进行广泛的用户研究,其中我们的方法被证明了为光逼真的超分辨率优于最先进的方法。代码和培训的型号可在:git.io/adflow
translated by 谷歌翻译
可以使用超分辨率方法改善医学图像的空间分辨率。实际增强的超级分辨率生成对抗网络(Real-Esrgan)是最近用于产生较高分辨率图像的最新有效方法之一,给定较低分辨率的输入图像。在本文中,我们应用这种方法来增强2D MR图像的空间分辨率。在我们提出的方法中,我们稍微修改了从脑肿瘤分割挑战(BRATS)2018数据集中训练2D磁共振图像(MRI)的结构。通过计算SSIM(结构相似性指数量度),NRMSE(归一化根平方误),MAE(平均绝对误差)和VIF(视觉信息保真度)值,通过计算SSIM(结构相似性指数量度)进行定性和定量验证。
translated by 谷歌翻译