目的:疾病知识图是一种连接,组织和访问有关疾病的不同信息的方式,对人工智能(AI)有很多好处。为了创建知识图,有必要以疾病概念之间的关系形式从多模式数据集中提取知识,并使概念和关系类型正常化。方法:我们介绍了Remap,这是一种多式模式提取和分类的方法。重新启动机器学习方法将部分不完整的知识图和医学语言数据集嵌入紧凑的潜在矢量空间中,然后将多模式嵌入以进行最佳疾病关系提取。结果:我们将重新映射方法应用于具有96,913个关系的疾病知识图和124万个句子的文本数据集。在由人类专家注释的数据集中,Remap通过将疾病知识图与文本信息融合,将基于文本的疾病关系提取提高了10.0%(准确性)和17.2%(F1分数)。此外,重建利用文本信息以推荐知识图中的新关系,优于基于图的方法,高于8.4%(准确性)和10.4%(F1得分)。结论:重塑是通过融合结构化知识和文本信息来提取和分类疾病关系的多模式方法。重映提供了灵活的神经体系结构,可轻松找到,访问和验证疾病概念之间的AI驱动关系。
translated by 谷歌翻译
The development of deep neural networks has improved representation learning in various domains, including textual, graph structural, and relational triple representations. This development opened the door to new relation extraction beyond the traditional text-oriented relation extraction. However, research on the effectiveness of considering multiple heterogeneous domain information simultaneously is still under exploration, and if a model can take an advantage of integrating heterogeneous information, it is expected to exhibit a significant contribution to many problems in the world. This thesis works on Drug-Drug Interactions (DDIs) from the literature as a case study and realizes relation extraction utilizing heterogeneous domain information. First, a deep neural relation extraction model is prepared and its attention mechanism is analyzed. Next, a method to combine the drug molecular structure information and drug description information to the input sentence information is proposed, and the effectiveness of utilizing drug molecular structures and drug descriptions for the relation extraction task is shown. Then, in order to further exploit the heterogeneous information, drug-related items, such as protein entries, medical terms and pathways are collected from multiple existing databases and a new data set in the form of a knowledge graph (KG) is constructed. A link prediction task on the constructed data set is conducted to obtain embedding representations of drugs that contain the heterogeneous domain information. Finally, a method that integrates the input sentence information and the heterogeneous KG information is proposed. The proposed model is trained and evaluated on a widely used data set, and as a result, it is shown that utilizing heterogeneous domain information significantly improves the performance of relation extraction from the literature.
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
与伯特(Bert)等语言模型相比,已证明知识增强语言表示的预培训模型在知识基础构建任务(即〜关系提取)中更有效。这些知识增强的语言模型将知识纳入预训练中,以生成实体或关系的表示。但是,现有方法通常用单独的嵌入表示每个实体。结果,这些方法难以代表播出的实体和大量参数,在其基础代币模型之上(即〜变压器),必须使用,并且可以处理的实体数量为由于内存限制,实践限制。此外,现有模型仍然难以同时代表实体和关系。为了解决这些问题,我们提出了一个新的预培训模型,该模型分别从图书中学习实体和关系的表示形式,并分别在文本中跨越跨度。通过使用SPAN模块有效地编码跨度,我们的模型可以代表实体及其关系,但所需的参数比现有模型更少。我们通过从Wikipedia中提取的知识图对我们的模型进行了预训练,并在广泛的监督和无监督的信息提取任务上进行了测试。结果表明,我们的模型比基线学习对实体和关系的表现更好,而在监督的设置中,微调我们的模型始终优于罗伯塔,并在信息提取任务上取得了竞争成果。
translated by 谷歌翻译
自然语言处理(NLP)是一个人工智能领域,它应用信息技术来处理人类语言,在一定程度上理解并在各种应用中使用它。在过去的几年中,该领域已经迅速发展,现在采用了深层神经网络的现代变体来从大型文本语料库中提取相关模式。这项工作的主要目的是调查NLP在药理学领域的最新使用。正如我们的工作所表明的那样,NLP是药理学高度相关的信息提取和处理方法。它已被广泛使用,从智能搜索到成千上万的医疗文件到在社交媒体中找到对抗性药物相互作用的痕迹。我们将覆盖范围分为五个类别,以调查现代NLP方法论,常见的任务,相关的文本数据,知识库和有用的编程库。我们将这五个类别分为适当的子类别,描述其主要属性和想法,并以表格形式进行总结。最终的调查介绍了该领域的全面概述,对从业者和感兴趣的观察者有用。
translated by 谷歌翻译
在“知识图”(kgs)的表示领域中,超级关系的事实由主要三重和几个辅助属性描述组成,这被认为比基于三重的事实更全面,更具体。但是,由于代表实体之间的隶属关系的层次结构削弱,因此,单个视图中现有的超相关KG嵌入方法受到限制。为了打破这一限制,我们提出了一个双视性超相关kg(DH-kg)结构,该结构包含实体的超相关实例视图,以及对从实体到共同模型超相关的概念的超相关本体论视图和分层信息。在本文中,我们首先定义了DH-KG上的链接预测和实体键入任务,并根据医疗数据构建了两个DH-KG数据集,即从Wikidata和HTDM中提取的JW44K-6K。此外,我们根据Gran编码器,HGNN和联合学习提出了DH-KG嵌入模型DHGE。实验结果表明,DHGE在DH-KG上的表现优于基线模型。我们还提供了该技术在高血压药物领域中应用的示例。我们的模型和数据集公开可用。
translated by 谷歌翻译
关系提取(RE)是自然语言处理的基本任务。RE试图通过识别文本中的实体对之间的关系信息来将原始的,非结构化的文本转变为结构化知识。RE有许多用途,例如知识图完成,文本摘要,提问和搜索查询。RE方法的历史可以分为四个阶段:基于模式的RE,基于统计的RE,基于神经的RE和大型语言模型的RE。这项调查始于对RE的早期阶段的一些示例性作品的概述,突出了局限性和缺点,以使进度相关。接下来,我们回顾流行的基准测试,并严格检查用于评估RE性能的指标。然后,我们讨论遥远的监督,这是塑造现代RE方法发展的范式。最后,我们回顾了重点是降级和培训方法的最新工作。
translated by 谷歌翻译
我们从第一批原则提供了一个理论分析,该原则在预训练和微调性能的关系归纳偏差之间建立了新的联系,同时提供了一般预训练模型的延长视图。我们进一步探讨了现有的预训练方法如何强加相关的归纳偏差,发现绝大多数现有方法几乎专注于以帧内方式建模的关系,而不是每种样本方式。我们建立了这些调查结果,这些发现与跨越3个数据模式和10个下游任务的标准基准测试。这些调查验证了我们的理论分析,并提供了一种方法,以产生新的预训练方法,该方法与现有的方法符合用户指定的关系图。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
学术知识图(KGS)提供了代表科学出版物编码的知识的丰富的结构化信息来源。随着出版的科学文学的庞大,包括描述科学概念的过多的非均匀实体和关系,这些公斤本质上是不完整的。我们呈现Exbert,一种利用预先训练的变压器语言模型来执行学术知识图形完成的方法。我们将知识图形的三元组模型为文本并执行三重分类(即,属于KG或不属于KG)。评估表明,在三重分类,链路预测和关系预测的任务中,Exbert在三个学术kg完成数据集中表现出其他基线。此外,我们将两个学术数据集作为研究界的资源,从公共公共公报和在线资源中收集。
translated by 谷歌翻译
我们提出了一种方法,通过将知识存储在外部知识图(kg)中,并使用密集的索引从该kg中检索,使自然语言理解模型更有效地有效。给定(可能是多语言的)下游任务数据,例如德语中的句子,我们从kg中检索实体,并使用其多模式表示形式来改善下游任务绩效。我们使用最近发布的VisualSem KG作为我们的外部知识存储库,涵盖了Wikipedia和WordNet实体的子集,并比较基于元组和基于图的算法的混合,以学习基于KG多模式信息的实体和关系表示。 。我们在两个下游任务上展示了学识渊博的实体表示形式的有用性,并在多语言命名实体识别任务上的性能提高了$ 0.3 \%$ - $ 0.7 \%\%$ f1,而我们的准确度最高为$ 2.5 \%\%$ $提高。在视觉意义上的歧义任务上。我们所有的代码和数据都提供:\ url {https://github.com/iacercalixto/visualsem-kg}。
translated by 谷歌翻译
知识图(KG)嵌入寻求学习实体和关系的向量表示。传统的模型理由是图形结构,但它们遭受了图形不完整和长尾实体的问题。最近的研究使用了预训练的语言模型根据实体和关系的文本信息来学习嵌入,但它们无法利用图形结构。在论文中,我们从经验上表明,这两种特征是KG嵌入的互补性。为此,我们提出了Cole,Cole是一种用于嵌入KG的共同介绍方法,可利用图形结构和文本信息的互补性。其图形嵌入模型使用变压器从其邻域子图中重建实体的表示。其文本嵌入模型使用预训练的语言模型来从其名称,描述和关系邻居的软提示中生成实体表示。为了让两个模型相互推广,我们提出了共同依据学习,使他们可以从彼此的预测逻辑中提取选择性知识。在我们的共同阶段学习中,每个模型既是老师又是学生。基准数据集上的实验表明,这两个模型的表现优于其相关基线,而与共同介绍学习的集合方法Cole可以推进KG嵌入的最先进。
translated by 谷歌翻译
由于缺乏标记的数据和高注释成本,需要域专家,生物医学领域中的关系提取具有挑战性。远处的监督通常用于通过将知识图与原始文本配对,以解决带注释数据的稀缺性。这样的管道容易出现噪声,并且为涵盖大量生物医学概念的规模增加了挑战。我们研究了现有的远覆盖范围远处监督的生物医学关系提取基准,发现培训和测试关系之间的重叠范围从26%到86%。此外,我们注意到这些基准的数据构建过程中的几个不一致,并且在没有火车测试泄漏的情况下,重点是较窄的实体类型之间的相互作用。这项工作提出了更准确的基准MEDDISTANT19,用于远距离覆盖的远距离监督的生物医学关系提取,以解决这些缺点,并通过将MEDLINE摘要与广泛使用的Snomed Snomed临床术语进行对齐。缺乏针对领域特异性语言模型的彻底评估,我们还进行了实验,以验证一般领域关系提取结果与生物医学关系提取。
translated by 谷歌翻译
预训练的语言模型(PLM)在各种自然语言理解任务上取得了巨大的成功。另一方面,对PLM的简单微调对于特定于领域的任务可能是次优的,因为它们不可能涵盖所有域中的知识。尽管PLM的自适应预培训可以帮助他们获得特定于领域的知识,但需要大量的培训成本。此外,自适应预训练可能会通过造成灾难性忘记其常识来损害PLM在下游任务上的表现。为了克服PLM适应性适应性预训练的这种局限性,我们提出了一个新颖的域名适应框架,用于将PLMS创造为知识增强语言模型适应性(KALA),该框架调节了PLM的中间隐藏表示与域中的中间隐藏表示,由实体和实体和实体和实体和实体构成他们的关系事实。我们验证了Kala在问题答案中的性能,并在各个域的多个数据集上命名实体识别任务。结果表明,尽管在计算上有效,但我们的Kala在很大程度上优于适应性预训练。代码可在以下网址获得:https://github.com/nardien/kala/。
translated by 谷歌翻译
自动问题应答(QA)系统的目的是以时间有效的方式向用户查询提供答案。通常在数据库(或知识库)或通常被称为语料库的文件集合中找到答案。在过去的几十年里,收购知识的扩散,因此生物医学领域的新科学文章一直是指数增长。因此,即使对于领域专家,也难以跟踪域中的所有信息。随着商业搜索引擎的改进,用户可以在某些情况下键入其查询并获得最相关的一小组文档,以及在某些情况下从文档中的相关片段。但是,手动查找所需信息或答案可能仍然令人疑惑和耗时。这需要开发高效的QA系统,该系统旨在为用户提供精确和精确的答案提供了生物医学领域的自然语言问题。在本文中,我们介绍了用于开发普通域QA系统的基本方法,然后彻底调查生物医学QA系统的不同方面,包括使用结构化数据库和文本集合的基准数据集和几种提出的方​​法。我们还探讨了当前系统的局限性,并探索潜在的途径以获得进一步的进步。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
使用诸如BERT,ELMO和FLAIR等模型建模上下文信息的成立具有显着改善了文字的表示学习。它还给出了几乎每个NLP任务机器翻译,文本摘要和命名实体识别的Sota结果,以命名为少。在这项工作中,除了使用这些主导的上下文感知的表示之外,我们还提出了一种用于命名实体识别(NER)的知识意识表示学习(KARL)网络。我们讨论了利用现有方法在纳入世界知识方面的挑战,并展示了如何利用我们所提出的方法来克服这些挑战。 KARL基于变压器编码器,该变压器编码器利用表示为事实三元组的大知识库,将它们转换为图形上下文,并提取驻留在内部的基本实体信息以生成用于特征增强的上下文化三联表示。实验结果表明,使用卡尔的增强可以大大提升我们的内部系统的性能,并在三个公共网络数据集中的文献中的现有方法,即Conll 2003,Conll ++和Ontonotes V5实现了比文献中现有方法的显着更好的结果。我们还观察到更好的概括和应用于从Karl上看不见的实体的真实环境。
translated by 谷歌翻译
最近公布的知识图形嵌入模型的实施,培训和评估的异质性已经公平和彻底的比较困难。为了评估先前公布的结果的再现性,我们在Pykeen软件包中重新实施和评估了21个交互模型。在这里,我们概述了哪些结果可以通过其报告的超参数再现,这只能以备用的超参数再现,并且无法再现,并且可以提供洞察力,以及为什么会有这种情况。然后,我们在四个数据集上进行了大规模的基准测试,其中数千个实验和24,804 GPU的计算时间。我们展示了最佳实践,每个模型的最佳配置以及可以通过先前发布的最佳配置进行改进的洞察。我们的结果强调了模型架构,训练方法,丢失功能和逆关系显式建模的组合对于模型的性能来说至关重要,而不仅由模型架构决定。我们提供了证据表明,在仔细配置时,若干架构可以获得对最先进的结果。我们制定了所有代码,实验配置,结果和分析,导致我们在https://github.com/pykeen/pykeen和https://github.com/pykeen/benchmarking中获得的解释
translated by 谷歌翻译
Knowledge graphs enable a wide variety of applications, including question answering and information retrieval. Despite the great effort invested in their creation and maintenance, even the largest (e.g., Yago, DBPedia or Wikidata) remain incomplete. We introduce Relational Graph Convolutional Networks (R-GCNs) and apply them to two standard knowledge base completion tasks: Link prediction (recovery of missing facts, i.e. subject-predicate-object triples) and entity classification (recovery of missing entity attributes). R-GCNs are related to a recent class of neural networks operating on graphs, and are developed specifically to deal with the highly multi-relational data characteristic of realistic knowledge bases. We demonstrate the effectiveness of R-GCNs as a stand-alone model for entity classification. We further show that factorization models for link prediction such as DistMult can be significantly improved by enriching them with an encoder model to accumulate evidence over multiple inference steps in the relational graph, demonstrating a large improvement of 29.8% on FB15k-237 over a decoder-only baseline. * Equal contribution.
translated by 谷歌翻译
机器学习方法尤其是深度神经网络取得了巨大的成功,但其中许多往往依赖于一些标记的样品进行训练。在真实世界的应用中,我们经常需要通过例如具有新兴预测目标和昂贵的样本注释的动态上下文来解决样本短缺。因此,低资源学习,旨在学习具有足够资源(特别是培训样本)的强大预测模型,现在正在被广泛调查。在所有低资源学习研究中,许多人更喜欢以知识图(kg)的形式利用一些辅助信息,这对于知识表示变得越来越受欢迎,以减少对标记样本的依赖。在这项调查中,我们非常全面地审查了90美元的报纸关于两个主要的低资源学习设置 - 零射击学习(ZSL)的预测,从未出现过训练,而且很少拍摄的学习(FSL)预测的新类仅具有可用的少量标记样本。我们首先介绍了ZSL和FSL研究中使用的KGS以及现有的和潜在的KG施工解决方案,然后系统地分类和总结了KG感知ZSL和FSL方法,将它们划分为不同的范例,例如基于映射的映射,数据增强,基于传播和基于优化的。我们接下来呈现了不同的应用程序,包括计算机视觉和自然语言处理中的kg增强预测任务,还包括kg完成的任务,以及每个任务的一些典型评估资源。我们最终讨论了一些关于新学习和推理范式的方面的一些挑战和未来方向,以及高质量的KGs的建设。
translated by 谷歌翻译