知识图(KG)嵌入寻求学习实体和关系的向量表示。传统的模型理由是图形结构,但它们遭受了图形不完整和长尾实体的问题。最近的研究使用了预训练的语言模型根据实体和关系的文本信息来学习嵌入,但它们无法利用图形结构。在论文中,我们从经验上表明,这两种特征是KG嵌入的互补性。为此,我们提出了Cole,Cole是一种用于嵌入KG的共同介绍方法,可利用图形结构和文本信息的互补性。其图形嵌入模型使用变压器从其邻域子图中重建实体的表示。其文本嵌入模型使用预训练的语言模型来从其名称,描述和关系邻居的软提示中生成实体表示。为了让两个模型相互推广,我们提出了共同依据学习,使他们可以从彼此的预测逻辑中提取选择性知识。在我们的共同阶段学习中,每个模型既是老师又是学生。基准数据集上的实验表明,这两个模型的表现优于其相关基线,而与共同介绍学习的集合方法Cole可以推进KG嵌入的最先进。
translated by 谷歌翻译
由于知识图(kgs)的不完整,旨在预测kgs中未观察到的关系的零照片链接预测(ZSLP)引起了研究人员的最新兴趣。一个常见的解决方案是将关系的文本特征(例如表面名称或文本描述)用作辅助信息,以弥合所见关系和看不见的关系之间的差距。当前方法学习文本中每个单词令牌的嵌入。这些方法缺乏稳健性,因为它们遭受了量不足(OOV)的问题。同时,建立在字符n-grams上的模型具有为OOV单词生成表达式表示的能力。因此,在本文中,我们提出了一个为零链接预测(HNZSLP)的层次N-gram框架,该框架考虑了ZSLP的关系n-gram之间的依赖项。我们的方法通过首先在表面名称上构造层次n-gram图来进行起作用,以模拟导致表面名称的N-gram的组织结构。然后,将基于变压器的革兰amtransformer呈现,以建模层次n-gram图,以构建ZSLP的关系嵌入。实验结果表明,提出的HNZSLP在两个ZSLP数据集上实现了最先进的性能。
translated by 谷歌翻译
知识嵌入(KE)通过将实体和关系嵌入连续的向量空间来表示知识图(kg)。现有方法主要基于结构或基于描述。基于结构的方法学习保留KGS固有结构的表示。它们不能很好地代表具有有限结构信息的现实世界中的丰富长尾实体。基于描述的方法利用文本信息和语言模型。朝这个方向迈出的先前方法几乎不能胜过基于结构的结构,并且遇到了昂贵的负面抽样和限制性描述需求等问题。在本文中,我们提出了LMKE,该LMKE采用语言模型来得出知识嵌入,旨在既富集了长尾实体的表示形式又旨在解决先前的基于描述的方法的问题。我们通过对比度学习框架制定基于描述的KE学习,以提高培训和评估的效率。实验结果表明,LMKE在链接预测和三重分类的KE基准上实现了最先进的性能,尤其是对于长尾实体。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
学术知识图(KGS)提供了代表科学出版物编码的知识的丰富的结构化信息来源。随着出版的科学文学的庞大,包括描述科学概念的过多的非均匀实体和关系,这些公斤本质上是不完整的。我们呈现Exbert,一种利用预先训练的变压器语言模型来执行学术知识图形完成的方法。我们将知识图形的三元组模型为文本并执行三重分类(即,属于KG或不属于KG)。评估表明,在三重分类,链路预测和关系预测的任务中,Exbert在三个学术kg完成数据集中表现出其他基线。此外,我们将两个学术数据集作为研究界的资源,从公共公共公报和在线资源中收集。
translated by 谷歌翻译
完成知识三胞胎的任务具有广泛的下游应用程序。结构和语义信息在知识图完成中起着重要作用。与以前依靠知识图的结构或语义的方法不同,我们建议将语义共同嵌入知识三胞胎的自然语言描述及其结构信息。我们的方法通过对概率结构化损失进行微调预训练的语言模型来嵌入完成任务的知识图,其中语言模型的正向通过捕获语义和损失重建结构。我们对各种知识图基准的广泛实验证明了我们方法的最新性能。我们还表明,由于语义的更好使用,我们的方法可以显着提高低资源制度的性能。代码和数据集可在https://github.com/pkusjh/lass上找到。
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
Analogical reasoning is fundamental to human cognition and holds an important place in various fields. However, previous studies mainly focus on single-modal analogical reasoning and ignore taking advantage of structure knowledge. Notably, the research in cognitive psychology has demonstrated that information from multimodal sources always brings more powerful cognitive transfer than single modality sources. To this end, we introduce the new task of multimodal analogical reasoning over knowledge graphs, which requires multimodal reasoning ability with the help of background knowledge. Specifically, we construct a Multimodal Analogical Reasoning dataSet (MARS) and a multimodal knowledge graph MarKG. We evaluate with multimodal knowledge graph embedding and pre-trained Transformer baselines, illustrating the potential challenges of the proposed task. We further propose a novel model-agnostic Multimodal analogical reasoning framework with Transformer (MarT) motivated by the structure mapping theory, which can obtain better performance.
translated by 谷歌翻译
近年来,人们对少量知识图(FKGC)的兴趣日益增加,该图表旨在推断出关于该关系的一些参考三元组,从而推断出不见了的查询三倍。现有FKGC方法的主要重点在于学习关系表示,可以反映查询和参考三元组共享的共同信息。为此,这些方法从头部和尾部实体的直接邻居中学习实体对表示,然后汇总参考实体对的表示。但是,只有从直接邻居那里学到的实体对代表可能具有较低的表现力,当参与实体稀疏直接邻居或与其他实体共享一个共同的当地社区。此外,仅仅对头部和尾部实体的语义信息进行建模不足以准确推断其关系信息,尤其是当它们具有多个关系时。为了解决这些问题,我们提出了一个特定于关系的上下文学习(RSCL)框架,该框架利用了三元组的图形上下文,以学习全球和本地关系特定的表示形式,以使其几乎没有相关关系。具体而言,我们首先提取每个三倍的图形上下文,这可以提供长期实体关系依赖性。为了编码提取的图形上下文,我们提出了一个分层注意网络,以捕获三元组的上下文信息并突出显示实体的有价值的本地邻里信息。最后,我们设计了一个混合注意聚合器,以评估全球和本地级别的查询三元组的可能性。两个公共数据集的实验结果表明,RSCL的表现优于最先进的FKGC方法。
translated by 谷歌翻译
知识图(kgs)由于能够存储适用于许多领域的关系知识的能力,因此有助于多种应用。尽管在创造和维护方面进行了巨大的努力,但即使是最大的公斤也远非完整。因此,KG完成(KGC)已成为KG研究最关键的任务之一。最近,该领域的大量文献围绕着使用图神经网络(GNN)学习强大的嵌入,从而利用KGS中的拓扑结构。具体而言,已经做出了专门的努力,以扩展GNN,通常是为简单的同质和单一相关图设计的,以通过设计更复杂的聚合方案而不是相邻节点(关键的节点)(通过设计更复杂的聚合方案)(为GNN绩效)适当利用多关系信息。这些方法的成功自然归因于GNN在简单的多层感知器(MLP)模型上使用,这是由于它们的附加聚合功能。在这项工作中,我们发现简单的MLP模型能够达到与GNN的可比性能,这表明聚集可能并不像以前那样重要。通过进一步的探索,我们显示出仔细的评分功能和损失功能设计对KGC模型性能的影响要大得多,并且实际上不需要聚集。这表明了评分功能设计,损失功能设计和先前工作中的聚集结合,并有很有希望的见解当今最先进的KGC方法的可伸缩性,以及对KGC任务更合适的聚合设计的仔细注意明天。该实现可在线获得:https://github.com/juanhui28/are_mpnns_helpful。
translated by 谷歌翻译
The development of deep neural networks has improved representation learning in various domains, including textual, graph structural, and relational triple representations. This development opened the door to new relation extraction beyond the traditional text-oriented relation extraction. However, research on the effectiveness of considering multiple heterogeneous domain information simultaneously is still under exploration, and if a model can take an advantage of integrating heterogeneous information, it is expected to exhibit a significant contribution to many problems in the world. This thesis works on Drug-Drug Interactions (DDIs) from the literature as a case study and realizes relation extraction utilizing heterogeneous domain information. First, a deep neural relation extraction model is prepared and its attention mechanism is analyzed. Next, a method to combine the drug molecular structure information and drug description information to the input sentence information is proposed, and the effectiveness of utilizing drug molecular structures and drug descriptions for the relation extraction task is shown. Then, in order to further exploit the heterogeneous information, drug-related items, such as protein entries, medical terms and pathways are collected from multiple existing databases and a new data set in the form of a knowledge graph (KG) is constructed. A link prediction task on the constructed data set is conducted to obtain embedding representations of drugs that contain the heterogeneous domain information. Finally, a method that integrates the input sentence information and the heterogeneous KG information is proposed. The proposed model is trained and evaluated on a widely used data set, and as a result, it is shown that utilizing heterogeneous domain information significantly improves the performance of relation extraction from the literature.
translated by 谷歌翻译
Pre-trained Language Models (PLMs) which are trained on large text corpus through the self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Incorporating knowledge into PLMs has been tried to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight the focus of these two kinds of tasks. For NLU, we take several types of knowledge into account and divide them into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
translated by 谷歌翻译
知识图(kgs)在许多应用程序中越来越重要的基础架构,同时患有不完整问题。 KG完成任务(KGC)自动根据不完整的KG预测缺失的事实。但是,现有方法在现实情况下表现不佳。一方面,他们的性能将巨大的降解,而kg的稀疏性越来越大。另一方面,预测的推理过程是一个不可信的黑匣子。本文提出了一个稀疏kgc的新型可解释模型,将高阶推理组合到图形卷积网络中,即HOGRN。它不仅可以提高减轻信息不足问题的概括能力,而且还可以在保持模型的有效性和效率的同时提供可解释性。有两个主要组件无缝集成以进行关节优化。首先,高阶推理成分通过捕获关系之间的内源性相关性来学习高质量的关系表示。这可以反映逻辑规则,以证明更广泛的事实是合理的。其次,更新组件的实体利用无重量的图形卷积网络(GCN)有效地模拟具有可解释性的KG结构。与常规方法不同,我们在没有其他参数的情况下在关系空间中进行实体聚合和基于设计组成的注意。轻巧的设计使HOGRN更适合稀疏设置。为了进行评估,我们进行了广泛的实验 - HOGRN对几个稀疏KG的结果表现出了令人印象深刻的改善(平均为9%的MRR增益)。进一步的消融和案例研究证明了主要成分的有效性。我们的代码将在接受后发布。
translated by 谷歌翻译
链路预测在知识图中起着重要作用,这是许多人工智能任务的重要资源,但它通常受不完整的限制。在本文中,我们提出了知识图表BERT for Link预测,名为LP-BERT,其中包含两个培训阶段:多任务预训练和知识图微调。预训练策略不仅使用掩码语言模型(MLM)来学习上下文语料库的知识,还引入掩模实体模型(MEM)和掩模关系模型(MRM),其可以通过预测语义来学习三元组的关系信息基于实体和关系元素。结构化三维关系信息可以转换为非结构化语义信息,可以将其与上下文语料库信息一起集成到培训模型中。在微调阶段,灵感来自对比学习,我们在样本批量中进行三样式的负面取样,这大大增加了负采样的比例,同时保持训练时间几乎不变。此外,我们提出了一种基于Triples的逆关系的数据增强方法,以进一步增加样本分集。我们在WN18RR和UMLS数据集上实现最先进的结果,特别是HITS @ 10指示器从WN18RR数据集上的先前最先进的结果提高了5 \%。
translated by 谷歌翻译
知识图完成(KGC)最近已扩展到多个知识图(kg)结构,启动了新的研究方向,例如静态kgc,颞kgc和少数kgc。以前的作品通常设计了KGC模型与特定的图形结构紧密结合,这不可避免地会导致两个缺点:1)结构特异性KGC模型是互不兼容的; 2)现有的KGC方法不适合新兴KG。在本文中,我们提出了KG-S2S,即SEQ2SEQ生成框架,可以通过将KG事实的表示形式统一为“平坦”文本,无论其原始形式如何,可以通过将KG事实的表示来解决不同的语言图形结构。为了纠正“平面”文本的KG结构信息损失,我们进一步改善了实体和关系的输入表示,以及KG-S2中的推理算法。五个基准测试的实验表明,KG-S2S的表现优于许多竞争基线,从而创造了新的最新性能。最后,我们分析了KG-S2S在不同关系和非实体世代上的能力。
translated by 谷歌翻译
知识图完成最近已广泛研究,以通过主要建模图结构特征来完成三元组中的缺失元素,但对图形结构的稀疏性敏感。期望解决这一挑战的相关文本,例如实体名称和描述,充当知识图(kgs)的另一种表达形式(kgs)。已经提出了几种使用两个编码器的结构和文本消息的方法,但由于未能平衡它们之间的权重有限。并在推理期间保留结构和文本编码器,也遭受了沉重的参数。通过知识蒸馏的激励,我们将知识视为从输入到输出概率的映射,并在稀疏的kgs上提出了一个插件框架VEM2L,以将从文本和结构消息提取到统一的知识中融合知识。具体而言,我们将模型获取的知识分配为两个不重叠的部分:一个部分与训练三元组合的合适能力有关,可以通过激励两个编码者互相学习训练集来融合。另一个反映了未观察到的查询的概括能力。相应地,我们提出了一种新的融合策略,该策略由变量EM算法证明,以融合模型的概括能力,在此期间,我们还应用图形致密操作以进一步缓解稀疏的图形问题。通过结合这两种融合方法,我们最终提出了VEM2L框架。详细的理论证据以及定量和定性实验都证明了我们提出的框架的有效性和效率。
translated by 谷歌翻译
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to over-smoothing of representations and also limits their scalability. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method.
translated by 谷歌翻译
实体对齐是将知识图(KGS)与多个源集成的重要步骤。以前的实体对齐尝试已经探索了不同的kg结构,例如基于邻域和基于路径的上下文,以学习实体嵌入物,但它们受到捕获多上下文特征的限制。此外,大多数方法直接利用嵌入相似性以确定实体对齐,而不考虑实体和关系之间的全局互动。在这项工作中,我们提出了一个明智的多上下文实体对齐(IMEA)模型来解决这些问题。特别是,我们引入变压器以灵活地捕获关系,路径和邻域背景,并根据嵌入相似度和关系/实体功能设计整体推理以估计对齐概率。从整体推理获得的对准证据通过所提出的软标签编辑进一步注入变压器,以通知嵌入学习。与现有的最先进的实体对准方法相比,若干基准数据集上的实验结果证明了IMEA模型的优越性。
translated by 谷歌翻译
知识增强的预训练预审语言模型(Keplms)是预先接受的模型,具有从知识图中注入的关系三元组,以提高语言理解能力。为了保证有效的知识注入,之前的研究将模型与知识编码器集成,以表示从知识图表中检索的知识。知识检索和编码的操作带来了重要的计算负担,限制了在需要高推理速度的现实应用程序中使用这些模型。在本文中,我们提出了一种名为DKPLM的新型KEPLM,其在预训练,微调和推理阶段进行了预先训练的语言模型的知识注射过程,这有助于KEPLMS在现实世界场景中的应用。具体而言,我们首先检测知识感知的长尾实体作为知识注射的目标,增强了Keplms的语义理解能力,避免注入冗余信息。长尾实体的嵌入式被相关知识三元组形成的“伪令牌表示”取代。我们进一步设计了用于预培训的关系知识解码任务,以强制模型通过关系三重重建来真正了解注入的知识。实验表明,我们的模型在零拍摄知识探测任务和多种知识意识语言理解任务中显着优于其他KEPLS。我们进一步表明,由于分解机制,DKPLM具有比其他竞争模型更高的推理速度。
translated by 谷歌翻译
知识图,例如Wikidata,包括结构和文本知识,以表示知识。对于图形嵌入和语言模型的两种方式中的每种方法都可以学习预测新型结构知识的模式。很少有方法与模式结合学习和推断,而这些现有的方法只能部分利用结构和文本知识的相互作用。在我们的方法中,我们以单个方式的现有强烈表示为基础,并使用超复杂代数来表示(i),(i),单模式嵌入以及(ii),不同方式之间的相互作用及其互补的知识表示手段。更具体地说,我们建议4D超复合数的二脑和四个元素表示,以整合四个模态,即结构知识图形嵌入,单词级表示(例如\ word2vec,fastText,fastText),句子级表示(句子transformer)和文档级表示(句子级别)(句子级别)(句子级表示)(句子变压器,doc2vec)。我们的统一矢量表示通过汉密尔顿和二脑产物进行标记的边缘的合理性,从而对不同模态之间的成对相互作用进行建模。对标准基准数据集的广泛实验评估显示了我们两个新模型的优越性,除了稀疏的结构知识外,还可以提高链接预测任务中的性能。
translated by 谷歌翻译