知识图完成最近已广泛研究,以通过主要建模图结构特征来完成三元组中的缺失元素,但对图形结构的稀疏性敏感。期望解决这一挑战的相关文本,例如实体名称和描述,充当知识图(kgs)的另一种表达形式(kgs)。已经提出了几种使用两个编码器的结构和文本消息的方法,但由于未能平衡它们之间的权重有限。并在推理期间保留结构和文本编码器,也遭受了沉重的参数。通过知识蒸馏的激励,我们将知识视为从输入到输出概率的映射,并在稀疏的kgs上提出了一个插件框架VEM2L,以将从文本和结构消息提取到统一的知识中融合知识。具体而言,我们将模型获取的知识分配为两个不重叠的部分:一个部分与训练三元组合的合适能力有关,可以通过激励两个编码者互相学习训练集来融合。另一个反映了未观察到的查询的概括能力。相应地,我们提出了一种新的融合策略,该策略由变量EM算法证明,以融合模型的概括能力,在此期间,我们还应用图形致密操作以进一步缓解稀疏的图形问题。通过结合这两种融合方法,我们最终提出了VEM2L框架。详细的理论证据以及定量和定性实验都证明了我们提出的框架的有效性和效率。
translated by 谷歌翻译
近年来,人们对少量知识图(FKGC)的兴趣日益增加,该图表旨在推断出关于该关系的一些参考三元组,从而推断出不见了的查询三倍。现有FKGC方法的主要重点在于学习关系表示,可以反映查询和参考三元组共享的共同信息。为此,这些方法从头部和尾部实体的直接邻居中学习实体对表示,然后汇总参考实体对的表示。但是,只有从直接邻居那里学到的实体对代表可能具有较低的表现力,当参与实体稀疏直接邻居或与其他实体共享一个共同的当地社区。此外,仅仅对头部和尾部实体的语义信息进行建模不足以准确推断其关系信息,尤其是当它们具有多个关系时。为了解决这些问题,我们提出了一个特定于关系的上下文学习(RSCL)框架,该框架利用了三元组的图形上下文,以学习全球和本地关系特定的表示形式,以使其几乎没有相关关系。具体而言,我们首先提取每个三倍的图形上下文,这可以提供长期实体关系依赖性。为了编码提取的图形上下文,我们提出了一个分层注意网络,以捕获三元组的上下文信息并突出显示实体的有价值的本地邻里信息。最后,我们设计了一个混合注意聚合器,以评估全球和本地级别的查询三元组的可能性。两个公共数据集的实验结果表明,RSCL的表现优于最先进的FKGC方法。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
知识图(kgs)在许多应用程序中越来越重要的基础架构,同时患有不完整问题。 KG完成任务(KGC)自动根据不完整的KG预测缺失的事实。但是,现有方法在现实情况下表现不佳。一方面,他们的性能将巨大的降解,而kg的稀疏性越来越大。另一方面,预测的推理过程是一个不可信的黑匣子。本文提出了一个稀疏kgc的新型可解释模型,将高阶推理组合到图形卷积网络中,即HOGRN。它不仅可以提高减轻信息不足问题的概括能力,而且还可以在保持模型的有效性和效率的同时提供可解释性。有两个主要组件无缝集成以进行关节优化。首先,高阶推理成分通过捕获关系之间的内源性相关性来学习高质量的关系表示。这可以反映逻辑规则,以证明更广泛的事实是合理的。其次,更新组件的实体利用无重量的图形卷积网络(GCN)有效地模拟具有可解释性的KG结构。与常规方法不同,我们在没有其他参数的情况下在关系空间中进行实体聚合和基于设计组成的注意。轻巧的设计使HOGRN更适合稀疏设置。为了进行评估,我们进行了广泛的实验 - HOGRN对几个稀疏KG的结果表现出了令人印象深刻的改善(平均为9%的MRR增益)。进一步的消融和案例研究证明了主要成分的有效性。我们的代码将在接受后发布。
translated by 谷歌翻译
为了减轻从头开始构建知识图(kg)的挑战,更一般的任务是使用开放式语料库中的三元组丰富一个kg,那里获得的三元组包含嘈杂的实体和关系。在保持知识代表的质量的同时,以新收获的三元组丰富一个公园,这是一项挑战。本文建议使用从附加语料库中收集的信息来完善kg的系统。为此,我们将任务制定为两个耦合子任务,即加入事件提取(JEE)和知识图融合(KGF)。然后,我们提出了一个协作知识图融合框架,以允许我们的子任务以交替的方式相互协助。更具体地说,探险家执行了由地面注释和主管提供的现有KG监督的JEE。然后,主管评估了探险家提取的三元组,并用高度排名的人来丰富KG。为了实施此评估,我们进一步提出了一种翻译的关系一致性评分机制,以对齐并将提取的三元组对齐为先前的kg。实验验证了这种合作既可以提高JEE和KGF的表现。
translated by 谷歌翻译
知识嵌入(KE)通过将实体和关系嵌入连续的向量空间来表示知识图(kg)。现有方法主要基于结构或基于描述。基于结构的方法学习保留KGS固有结构的表示。它们不能很好地代表具有有限结构信息的现实世界中的丰富长尾实体。基于描述的方法利用文本信息和语言模型。朝这个方向迈出的先前方法几乎不能胜过基于结构的结构,并且遇到了昂贵的负面抽样和限制性描述需求等问题。在本文中,我们提出了LMKE,该LMKE采用语言模型来得出知识嵌入,旨在既富集了长尾实体的表示形式又旨在解决先前的基于描述的方法的问题。我们通过对比度学习框架制定基于描述的KE学习,以提高培训和评估的效率。实验结果表明,LMKE在链接预测和三重分类的KE基准上实现了最先进的性能,尤其是对于长尾实体。
translated by 谷歌翻译
知识图完成(KGC)最近已扩展到多个知识图(kg)结构,启动了新的研究方向,例如静态kgc,颞kgc和少数kgc。以前的作品通常设计了KGC模型与特定的图形结构紧密结合,这不可避免地会导致两个缺点:1)结构特异性KGC模型是互不兼容的; 2)现有的KGC方法不适合新兴KG。在本文中,我们提出了KG-S2S,即SEQ2SEQ生成框架,可以通过将KG事实的表示形式统一为“平坦”文本,无论其原始形式如何,可以通过将KG事实的表示来解决不同的语言图形结构。为了纠正“平面”文本的KG结构信息损失,我们进一步改善了实体和关系的输入表示,以及KG-S2中的推理算法。五个基准测试的实验表明,KG-S2S的表现优于许多竞争基线,从而创造了新的最新性能。最后,我们分析了KG-S2S在不同关系和非实体世代上的能力。
translated by 谷歌翻译
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when the KG embeddings are learned, has become a critical challenge. Subgraph reasoning with message passing is a promising and popular solution. Some recent methods have achieved good performance, but they (i) usually can only predict triples involving unseen entities alone, failing to address more realistic fully inductive situations with both unseen entities and unseen relations, and (ii) often conduct message passing over the entities with the relation patterns not fully utilized. In this study, we propose a new method named RMPI which uses a novel Relational Message Passing network for fully Inductive KGC. It passes messages directly between relations to make full use of the relation patterns for subgraph reasoning with new techniques on graph transformation, graph pruning, relation-aware neighborhood attention, addressing empty subgraphs, etc., and can utilize the relation semantics defined in the ontological schema of KG. Extensive evaluation on multiple benchmarks has shown the effectiveness of techniques involved in RMPI and its better performance compared with the existing methods that support fully inductive KGC. RMPI is also comparable to the state-of-the-art partially inductive KGC methods with very promising results achieved. Our codes and data are available at https://github.com/zjukg/RMPI.
translated by 谷歌翻译
知识图(KG)嵌入寻求学习实体和关系的向量表示。传统的模型理由是图形结构,但它们遭受了图形不完整和长尾实体的问题。最近的研究使用了预训练的语言模型根据实体和关系的文本信息来学习嵌入,但它们无法利用图形结构。在论文中,我们从经验上表明,这两种特征是KG嵌入的互补性。为此,我们提出了Cole,Cole是一种用于嵌入KG的共同介绍方法,可利用图形结构和文本信息的互补性。其图形嵌入模型使用变压器从其邻域子图中重建实体的表示。其文本嵌入模型使用预训练的语言模型来从其名称,描述和关系邻居的软提示中生成实体表示。为了让两个模型相互推广,我们提出了共同依据学习,使他们可以从彼此的预测逻辑中提取选择性知识。在我们的共同阶段学习中,每个模型既是老师又是学生。基准数据集上的实验表明,这两个模型的表现优于其相关基线,而与共同介绍学习的集合方法Cole可以推进KG嵌入的最先进。
translated by 谷歌翻译
知识图形嵌入(KGE)旨在学习实体和关系的陈述。大多数KGE模型取得了巨大的成功,特别是在外推情景中。具体地,考虑到看不见的三倍(H,R,T),培训的模型仍然可以正确地预测(H,R,Δ)或H(Δ,r,t),这种外推能力令人印象深刻。但是,大多数现有的KGE工作侧重于设计精致三重建模功能,主要告诉我们如何衡量观察三元的合理性,但是对为什么可以推断到未看见数据的原因有限的解释,以及什么是重要因素帮助Kge外推。因此,在这项工作中,我们试图研究kge外推两个问题:1。凯格如何推断出看看的数据? 2.如何设计KGE模型,具有更好的外推能力?对于问题1,我们首先分别讨论外推和关系,实体和三级的影响因素,提出了三种语义证据(SES),可以从列车集中观察,并为推断提供重要的语义信息。然后我们通过对几种典型KGE方法的广泛实验验证SES的有效性。对于问题2,为了更好地利用三个级别的SE,我们提出了一种新的基于GNN的KGE模型,称为语义证据意识图形神经网络(SE-GNN)。在SE-GNN中,每个级别的SE由相应的邻居图案明确地建模,并且通过多层聚合充分合并,这有助于获得更多外推知识表示。最后,通过对FB15K-237和WN18RR数据集的广泛实验,我们认为SE-GNN在知识图表完成任务上实现了最先进的性能,并执行更好的外推能力。
translated by 谷歌翻译
知识图嵌入(KGE)旨在将实体和关系映射到低维空间,并成为知识图完成的\ textit {de-facto}标准。大多数现有的KGE方法都受到稀疏挑战的困扰,在这种挑战中,很难预测在知识图中频繁的实体。在这项工作中,我们提出了一个新颖的框架KRACL,以减轻具有图表和对比度学习的KG中广泛的稀疏性。首先,我们建议知识关系网络(KRAT)通过同时将相邻的三元组投射到不同的潜在空间,并通过注意机制共同汇总信息来利用图形上下文。 KRAT能够捕获不同上下文三联的微妙的语义信息和重要性,并利用知识图中的多跳信息。其次,我们通过将对比度损失与跨熵损失相结合,提出知识对比损失,这引入了更多的负样本,从而丰富了对稀疏实体的反馈。我们的实验表明,KRACL在各种标准知识基准中取得了卓越的结果,尤其是在WN18RR和NELL-995上,具有大量低级内实体。广泛的实验还具有KRACL在处理稀疏知识图和鲁棒性三元组的鲁棒性方面的有效性。
translated by 谷歌翻译
The ability of knowledge graphs to represent complex relationships at scale has led to their adoption for various needs including knowledge representation, question-answering, fraud detection, and recommendation systems. Knowledge graphs are often incomplete in the information they represent, necessitating the need for knowledge graph completion tasks, such as link and relation prediction. Pre-trained and fine-tuned language models have shown promise in these tasks although these models ignore the intrinsic information encoded in the knowledge graph, namely the entity and relation types. In this work, we propose the Knowledge Graph Language Model (KGLM) architecture, where we introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types, therefore allowing the model to learn the structure of the knowledge graph. In this work, we show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
translated by 谷歌翻译
实体对齐是将知识图(KGS)与多个源集成的重要步骤。以前的实体对齐尝试已经探索了不同的kg结构,例如基于邻域和基于路径的上下文,以学习实体嵌入物,但它们受到捕获多上下文特征的限制。此外,大多数方法直接利用嵌入相似性以确定实体对齐,而不考虑实体和关系之间的全局互动。在这项工作中,我们提出了一个明智的多上下文实体对齐(IMEA)模型来解决这些问题。特别是,我们引入变压器以灵活地捕获关系,路径和邻域背景,并根据嵌入相似度和关系/实体功能设计整体推理以估计对齐概率。从整体推理获得的对准证据通过所提出的软标签编辑进一步注入变压器,以通知嵌入学习。与现有的最先进的实体对准方法相比,若干基准数据集上的实验结果证明了IMEA模型的优越性。
translated by 谷歌翻译
在知识图上回答自然语言问题(KGQA)仍然是通过多跳推理理解复杂问题的巨大挑战。以前的努力通常利用与实体相关的文本语料库或知识图(kg)嵌入作为辅助信息来促进答案选择。但是,实体之间隐含的富裕语义远未得到很好的探索。本文提议通过利用关系路径的混合语义来改善多跳kgqa。具体而言,我们基于新颖的旋转和规模的实体链接链接预测框架,集成了关系路径的明确文本信息和隐式kg结构特征。在三个KGQA数据集上进行的广泛实验证明了我们方法的优势,尤其是在多跳场景中。进一步的调查证实了我们方法在问题和关系路径之间的系统协调,以识别答案实体。
translated by 谷歌翻译
如今,知识图(KGS)一直在AI相关的应用中发挥关键作用。尽管尺寸大,但现有的公斤远非完全和全面。为了不断丰富KG,通常使用自动知识结构和更新机制,这不可避免地带来充足的噪音。然而,大多数现有知识图形嵌入(KGE)方法假设KGS中的所有三重事实都是正确的,并且在不考虑噪声和知识冲突的情况下将实体和关系投入到低维空间。这将导致kgs的低质量和不可靠的表示。为此,本文提出了一般的多任务加固学习框架,这可以大大缓解嘈杂的数据问题。在我们的框架中,我们利用强化学习来选择高质量的知识三分石,同时过滤出嘈杂的。此外,为了充分利用语义类似的关系之间的相关性,在具有多任务学习的集体方式中训练了类似关系的三重选择过程。此外,我们扩展了流行的KGE Models Transe,Distmult,与所提出的框架耦合和旋转。最后,实验验证表明,我们的方法能够增强现有的KGE模型,可以在嘈杂的情景中提供更强大的KGS表示。
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
由于知识图(kgs)的不完整,旨在预测kgs中未观察到的关系的零照片链接预测(ZSLP)引起了研究人员的最新兴趣。一个常见的解决方案是将关系的文本特征(例如表面名称或文本描述)用作辅助信息,以弥合所见关系和看不见的关系之间的差距。当前方法学习文本中每个单词令牌的嵌入。这些方法缺乏稳健性,因为它们遭受了量不足(OOV)的问题。同时,建立在字符n-grams上的模型具有为OOV单词生成表达式表示的能力。因此,在本文中,我们提出了一个为零链接预测(HNZSLP)的层次N-gram框架,该框架考虑了ZSLP的关系n-gram之间的依赖项。我们的方法通过首先在表面名称上构造层次n-gram图来进行起作用,以模拟导致表面名称的N-gram的组织结构。然后,将基于变压器的革兰amtransformer呈现,以建模层次n-gram图,以构建ZSLP的关系嵌入。实验结果表明,提出的HNZSLP在两个ZSLP数据集上实现了最先进的性能。
translated by 谷歌翻译
Multi-hop Question Answering over Knowledge Graph~(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question on a large-scale Knowledge Graph (KG). To cope with the vast search space, existing work usually adopts a two-stage approach: it firstly retrieves a relatively small subgraph related to the question and then performs the reasoning on the subgraph to accurately find the answer entities. Although these two stages are highly related, previous work employs very different technical solutions for developing the retrieval and reasoning models, neglecting their relatedness in task essence. In this paper, we propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning. For model architecture, UniKGQA consists of a semantic matching module based on a pre-trained language model~(PLM) for question-relation semantic matching, and a matching information propagation module to propagate the matching information along the edges on KGs. For parameter learning, we design a shared pre-training task based on question-relation matching for both retrieval and reasoning models, and then propose retrieval- and reasoning-oriented fine-tuning strategies. Compared with previous studies, our approach is more unified, tightly relating the retrieval and reasoning stages. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our method on the multi-hop KGQA task. Our codes and data are publicly available at https://github.com/RUCAIBox/UniKGQA.
translated by 谷歌翻译
学术知识图(KGS)提供了代表科学出版物编码的知识的丰富的结构化信息来源。随着出版的科学文学的庞大,包括描述科学概念的过多的非均匀实体和关系,这些公斤本质上是不完整的。我们呈现Exbert,一种利用预先训练的变压器语言模型来执行学术知识图形完成的方法。我们将知识图形的三元组模型为文本并执行三重分类(即,属于KG或不属于KG)。评估表明,在三重分类,链路预测和关系预测的任务中,Exbert在三个学术kg完成数据集中表现出其他基线。此外,我们将两个学术数据集作为研究界的资源,从公共公共公报和在线资源中收集。
translated by 谷歌翻译
链路预测在知识图中起着重要作用,这是许多人工智能任务的重要资源,但它通常受不完整的限制。在本文中,我们提出了知识图表BERT for Link预测,名为LP-BERT,其中包含两个培训阶段:多任务预训练和知识图微调。预训练策略不仅使用掩码语言模型(MLM)来学习上下文语料库的知识,还引入掩模实体模型(MEM)和掩模关系模型(MRM),其可以通过预测语义来学习三元组的关系信息基于实体和关系元素。结构化三维关系信息可以转换为非结构化语义信息,可以将其与上下文语料库信息一起集成到培训模型中。在微调阶段,灵感来自对比学习,我们在样本批量中进行三样式的负面取样,这大大增加了负采样的比例,同时保持训练时间几乎不变。此外,我们提出了一种基于Triples的逆关系的数据增强方法,以进一步增加样本分集。我们在WN18RR和UMLS数据集上实现最先进的结果,特别是HITS @ 10指示器从WN18RR数据集上的先前最先进的结果提高了5 \%。
translated by 谷歌翻译