在本文中,我们探讨了使用多个任务的单任务方法来解决多任务分类问题的尖峰神经网络的功能。我们设计并实施了一个多任务尖峰神经网络(MT-SNN),该网络可以在一次执行一项任务时学习两个或多个分类任务。通过调节此工作中使用的泄漏的集成和火神经元的发射阈值来选择执行的任务。该网络是使用Intel的Laihi2神经形态芯片的Intel熔岩平台实现的。对NMNIST数据的动态多任务分类进行测试。结果表明,MT-SNN通过修改其动力学有效地学习了多个任务,即尖峰神经元的触发阈值。
translated by 谷歌翻译
Emergence of deep neural networks (DNNs) has raised enormous attention towards artificial neural networks (ANNs) once again. They have become the state-of-the-art models and have won different machine learning challenges. Although these networks are inspired by the brain, they lack biological plausibility, and they have structural differences compared to the brain. Spiking neural networks (SNNs) have been around for a long time, and they have been investigated to understand the dynamics of the brain. However, their application in real-world and complicated machine learning tasks were limited. Recently, they have shown great potential in solving such tasks. Due to their energy efficiency and temporal dynamics there are many promises in their future development. In this work, we reviewed the structures and performances of SNNs on image classification tasks. The comparisons illustrate that these networks show great capabilities for more complicated problems. Furthermore, the simple learning rules developed for SNNs, such as STDP and R-STDP, can be a potential alternative to replace the backpropagation algorithm used in DNNs.
translated by 谷歌翻译
尖峰神经网络(SNN)为时间信号处理提供了有效的计算机制,尤其是与低功率SNN推理相结合时。历史上很难配置SNN,缺乏为任意任务寻找解决方案的一般方法。近年来,逐渐发芽的优化方法已应用于SNN,并且越来越轻松。因此,SNN和SNN推理处理器为在没有云依赖性的能源约束环境中为商业低功率信号处理提供了一个良好的平台。但是,迄今为止,行业中的ML工程师无法访问这些方法,需要研究生级培训才能成功配置单个SNN应用程序。在这里,我们演示了一条方便的高级管道,用于设计,训练和部署任意的时间信号处理应用程序,向子-MW SNN推理硬件。我们使用用于时间信号处理的新型直接SNN体系结构,使用突触时间常数的金字塔在一系列时间尺度上提取信号特征。我们在环境音频分类任务上演示了这种体系结构,该任务部署在流式传输模式下的Xylo SNN推理处理器上。我们的应用以低功率(<4MUW推理功率)达到了高准确性(98%)和低潜伏期(100ms)。我们的方法使培训和部署SNN应用程序可用于具有通用NN背景的ML工程师,而无需先前的Spiking NNS经验。我们打算将神经形态硬件和SNN成为商业低功率和边缘信号处理应用程序的吸引人选择。
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
We propose a novel backpropagation algorithm for training spiking neural networks (SNNs) that encodes information in the relative multiple spike timing of individual neurons without single-spike restrictions. The proposed algorithm inherits the advantages of conventional timing-based methods in that it computes accurate gradients with respect to spike timing, which promotes ideal temporal coding. Unlike conventional methods where each neuron fires at most once, the proposed algorithm allows each neuron to fire multiple times. This extension naturally improves the computational capacity of SNNs. Our SNN model outperformed comparable SNN models and achieved as high accuracy as non-convolutional artificial neural networks. The spike count property of our networks was altered depending on the time constant of the postsynaptic current and the membrane potential. Moreover, we found that there existed the optimal time constant with the maximum test accuracy. That was not seen in conventional SNNs with single-spike restrictions on time-to-fast-spike (TTFS) coding. This result demonstrates the computational properties of SNNs that biologically encode information into the multi-spike timing of individual neurons. Our code would be publicly available.
translated by 谷歌翻译
穗状花序的神经形状硬件占据了深度神经网络(DNN)的更节能实现的承诺,而不是GPU的标准硬件。但这需要了解如何在基于事件的稀疏触发制度中仿真DNN,否则能量优势丢失。特别地,解决序列处理任务的DNN通常采用难以使用少量尖峰效仿的长短期存储器(LSTM)单元。我们展示了许多生物神经元的面部,在每个尖峰后缓慢的超积极性(AHP)电流,提供了有效的解决方案。 AHP电流可以轻松地在支持多舱神经元模型的神经形状硬件中实现,例如英特尔的Loihi芯片。滤波近似理论解释为什么AHP-Neurons可以模拟LSTM单元的功能。这产生了高度节能的时间序列分类方法。此外,它为实现了非常稀疏的大量大型DNN来实现基础,这些大型DNN在文本中提取单词和句子之间的关系,以便回答有关文本的问题。
translated by 谷歌翻译
Spiking neural networks (SNN) are a viable alternative to conventional artificial neural networks when energy efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains. The training of SNN has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of neurons from the output error. The loss function can then be evaluated locally for every neuron. Incorporating the desire values into the STDP weight update leads to global error minimization and increasing classification accuracy. At the same time, the neuron dynamics and computational efficiency of STDP are maintained, making it a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. Furthermore, we show that desire backpropagation is computationally less complex than backpropagation in traditional neural networks.
translated by 谷歌翻译
大脑中尖刺神经元之间的沟通的事件驱动和稀疏性质对灵活和节能的AI来说具有很大的承诺。学习算法的最新进展已经证明,与标准经常性神经网络相比,可以有效地培训尖刺神经元的复发网络以实现竞争性能。尽管如此,随着这些学习算法使用错误 - 反复通过时间(BPTT),它们遭受了高的内存要求,慢慢训练,并且与在线学习不兼容。这将这些学习算法的应用限制为相对较小的网络和有限的时间序列长度。已经提出了具有较低计算和内存复杂性的BPTT的在线近似(E-PROP,OSTL),但在实践中也遭受内存限制,并且作为近似,不要倾销标准BPTT训练。在这里,我们展示了最近开发的BPTT替代方法,通过时间(FPTT)可以应用于尖峰神经网络。与BPTT不同,FPTT试图最大限度地减少损失的持续动态正常风险。结果,可以以在线方式计算FPTT,并且相对于序列长度具有固定的复杂性。与新型动态尖刺神经元模型结合时,液态常数神经元,我们表明SNNS培训了FPTT优于在线BPTT近似,并在时间分类任务上接近或超过离线BPTT精度。因此,这种方法使得在长期序列中以记忆友好的在线方式训练SNNS并向新颖和复杂的神经架构进行扩展。
translated by 谷歌翻译
超低功耗本地信号处理是始终安装在设备上的边缘应用的关键方面。尖刺神经网络的神经形态处理器显示出很大的计算能力,同时根据该领域的需要满足有限的电力预算。在这项工作中,我们提出了尖峰神经动力学作为扩张时间卷积的自然替代品。我们将这个想法扩展到WaveSense,这是一个由Wavenet Architects的激发灵感的尖峰神经网络。WaveSense使用简单的神经动力学,固定时间常数和简单的前馈结构,因此特别适用于神经形态实现。我们在几个数据集中测试此模型的功能,以用于关键字斑点。结果表明,该网络击败了其他尖刺神经网络的领域,并达到了诸如CNN和LSTM的人工神经网络的最先进的性能。
translated by 谷歌翻译
In the past years, artificial neural networks (ANNs) have become the de-facto standard to solve tasks in communications engineering that are difficult to solve with traditional methods. In parallel, the artificial intelligence community drives its research to biology-inspired, brain-like spiking neural networks (SNNs), which promise extremely energy-efficient computing. In this paper, we investigate the use of SNNs in the context of channel equalization for ultra-low complexity receivers. We propose an SNN-based equalizer with a feedback structure akin to the decision feedback equalizer (DFE). For conversion of real-world data into spike signals we introduce a novel ternary encoding and compare it with traditional log-scale encoding. We show that our approach clearly outperforms conventional linear equalizers for three different exemplary channels. We highlight that mainly the conversion of the channel output to spikes introduces a small performance penalty. The proposed SNN with a decision feedback structure enables the path to competitive energy-efficient transceivers.
translated by 谷歌翻译
我们在Nengo框架上介绍了基于纯净的神经网络(SNN)的基于稀疏分布式存储器(SDM)。我们基于Furber等人,2004年之前的工作,使用N-y-y of-of-modes实现SDM。作为SDM设计的组成部分,我们已经在Nengo上实现了使用SNN的相关矩阵存储器(CMM)。我们的SNN实施采用漏水集成和火(LIF)在Nengo上尖刺神经元模型。我们的目标是了解基于SNN的SDMS与传统SDMS相比如何进行。为此,我们在Nengo模拟了基于常规和基于SNN的SDM和CMM。我们观察到基于SNN的模型类似于传统的模型。为了评估不同SNN的性能,我们使用Adaptive-Lif,Spiking整流线性单元和Izhikevich模型重复实验并获得了类似的结果。我们得出结论,使用内存的神经元制定一些类型的关联存储器,其内存容量和其他功能类似于没有SNN的性能,确实可行。最后,我们已经实现了一个应用程序,其中使用N-M个代码编码的Mnist图像与其标签相关联并存储在基于SNN的SDM中。
translated by 谷歌翻译
由于降低了von-neumann架构运行深度学习模型的功耗的基本限制,在聚光灯下,基于低功率尖刺神经网络的神经栓塞系统的研究。为了整合大量神经元,神经元需要设计占据一个小面积,而是随着技术缩小,模拟神经元难以缩放,并且它们遭受降低的电压净空/动态范围和电路非线性。鉴于此,本文首先模拟了在28nm工艺中设计的现有电流镜的电压域神经元的非线性行为,并显示了神经元非线性的效果严重降低了SNN推理精度。然后,为了减轻这个问题,我们提出了一种新的神经元,该新型神经元在时域中加入输入的尖峰,并且大大改善了线性度,从而改善了与现有电压域神经元相比的推理精度。在Mnist DataSet上进行测试,所提出的神经元的推理误差率与理想神经元的引起误差率不同于0.1%。
translated by 谷歌翻译
我们提出了一种新的学习算法,使用传统的人工神经网络(ANN)作为代理训练尖刺神经网络(SNN)。我们分别与具有相同网络架构和共享突触权重的集成和火(IF)和Relu神经元进行两次SNN和ANN网络。两个网络的前进通过完全独立。通过假设具有速率编码的神经元作为Relu的近似值,我们将SNN中的SNN的误差进行了回复,以更新共享权重,只需用SNN的ANN最终输出替换ANN最终输出。我们将建议的代理学习应用于深度卷积的SNNS,并在Fahion-Mnist和CiFar10的两个基准数据集上进行评估,分别为94.56%和93.11%的分类准确性。所提出的网络可以优于培训的其他深鼻涕,训练,替代学习,代理梯度学习,或从深处转换。转换的SNNS需要长时间的仿真时间来达到合理的准确性,而我们的代理学习导致高效的SNN,模拟时间较短。
translated by 谷歌翻译
由于它们的时间加工能力及其低交换(尺寸,重量和功率)以及神经形态硬件中的节能实现,尖峰神经网络(SNNS)已成为传统人工神经网络(ANN)的有趣替代方案。然而,培训SNNS所涉及的挑战在准确性方面有限制了它们的表现,从而限制了他们的应用。因此,改善更准确的特征提取的学习算法和神经架构是SNN研究中的当前优先级之一。在本文中,我们展示了现代尖峰架构的关键组成部分的研究。我们在从最佳执行网络中凭经验比较了图像分类数据集中的不同技术。我们设计了成功的残余网络(Reset)架构的尖峰版本,并测试了不同的组件和培训策略。我们的结果提供了SNN设计的最新版本,它允许在尝试构建最佳视觉特征提取器时进行明智的选择。最后,我们的网络优于CIFAR-10(94.1%)和CIFAR-100(74.5%)数据集的先前SNN架构,并将现有技术与DVS-CIFAR10(71.3%)相匹配,参数较少而不是先前的状态艺术,无需安静转换。代码在https://github.com/vicenteax/spiking_resnet上获得。
translated by 谷歌翻译
尖峰神经网络(SNN)已成为用于分类任务的硬件有效体系结构。基于尖峰的编码的惩罚是缺乏完全使用尖峰执行的通用训练机制。已经进行了几项尝试,用于采用在非加速人工神经网络(ANN)中使用的强大反向传播(BP)技术:(1)SNN可以通过外部计算的数值梯度来训练。 (2)基于天然尖峰的学习的主要进步是使用具有分阶段的前向/向后传递的尖峰时间依赖性可塑性(STDP)的近似反向传播。但是,在此类阶段之间的信息传输需要外部内存和计算访问。这是神经形态硬件实现的挑战。在本文中,我们提出了一种基于随机SNN的后式Prop(SSNN-BP)算法,该算法利用复合神经元同时计算前向通行激活,并用尖峰明确计算前向传递梯度。尽管签名的梯度值是基于SPIKE的表示的挑战,但我们通过将梯度信号分为正和负流来解决这一问题。复合神经元以随机尖峰传播的形式编码信息,并将反向传播的权重更新转换为时间和空间上局部离散的STDP类似STDP的Spike Concike更新,使其与硬件友好的电阻式处理单元(RPU)兼容。此外,我们的方法使用足够长的尖峰训练来接近BP ANN基线。最后,我们表明,可以通过强制执行胜利者的抑制性横向连接来实现软磁体交叉渗透损失函数。我们的SNN通过与MNIST,时尚和扩展的MNIST数据集的ANN相当的性能来表现出极好的概括。因此,SSNN-BP可以使BP与纯粹基于尖峰的神经形态硬件兼容。
translated by 谷歌翻译
由于其强大的时空信息表示能力,尖峰神经网络(SNN)引起了很多关注。胶囊神经网络(CAPSNET)在不同级别的组装和耦合功能方面做得好。在这里,我们通过将胶囊引入尖刺神经网络的建模来提出尖峰帽。此外,我们提出了更具生物合理的尖峰定时依赖性可塑性路线机构。通过充分考虑低水平尖峰胶囊与高级尖峰胶囊之间的时空关系,它们之间的耦合能力进一步提高。我们在Mnist和FashionMnist数据集上进行了验证的实验。与其他优秀的SNN模型相比,我们的算法仍然实现了高性能。我们的尖峰帽完全结合了SNN和Capsnet的增强,并对噪声和仿射变换表现出强大的稳健性。通过向测试数据集添加不同的盐胡椒和高斯噪声,实验结果表明,当有更多的噪音时,我们的尖峰帽显示出更强大的性能,而人工神经网络无法正确澄清。同样,我们的尖峰帽显示出强烈的概括,可以在漂式数据集上仿射转换。
translated by 谷歌翻译
为了在专门的神经形态硬件中进行节能计算,我们提出了尖峰神经编码,这是基于预测性编码理论的人工神经模型家族的实例化。该模型是同类模型,它是通过在“猜测和检查”的永无止境过程中运行的,神经元可以预测彼此的活动值,然后调整自己的活动以做出更好的未来预测。我们系统的互动性,迭代性质非常适合感官流预测的连续时间表述,并且如我们所示,模型的结构产生了局部突触更新规则,可以用来补充或作为在线峰值定位的替代方案依赖的可塑性。在本文中,我们对模型的实例化进行了实例化,该模型包括泄漏的集成和火灾单元。但是,我们系统所在的框架自然可以结合更复杂的神经元,例如Hodgkin-Huxley模型。我们在模式识别方面的实验结果证明了当二进制尖峰列车是通信间通信的主要范式时,模型的潜力。值得注意的是,尖峰神经编码在分类绩效方面具有竞争力,并且在从任务序列中学习时会降低遗忘,从而提供了更经济的,具有生物学上的替代品,可用于流行的人工神经网络。
translated by 谷歌翻译
最近的研究表明,卷积神经网络(CNNS)不是图像分类的唯一可行的解决方案。此外,CNN中使用的重量共享和反向验证不对应于预测灵长类动物视觉系统中存在的机制。为了提出更加生物合理的解决方案,我们设计了使用峰值定时依赖性塑性(STDP)和其奖励调制变体(R-STDP)学习规则训练的本地连接的尖峰神经网络(SNN)。使用尖刺神经元和局部连接以及强化学习(RL)将我们带到了所提出的架构中的命名法生物网络。我们的网络由速率编码的输入层组成,后跟局部连接的隐藏层和解码输出层。采用尖峰群体的投票方案进行解码。我们使用Mnist DataSet获取图像分类准确性,并评估我们有益于于不同目标响应的奖励系统的稳健性。
translated by 谷歌翻译
脑启发的尖峰神经网络(SNN)已成功应用于许多模式识别域。基于SNN的深层结构在感知任务(例如图像分类,目标检测)中取得了可观的结果。但是,深SNN在加强学习(RL)任务中的应用仍然是一个问题。尽管以前有关于SNN和RL组合的研究,但其中大多数专注于浅网络的机器人控制问题,或使用ANN-SNN转换方法来实施Spiking Spiking Deep Q Network(SDQN)。在这项工作中,我们数学分析了SDQN中尖峰信号特征消失的问题,并提出了一种基于潜在的层归一化(PBLN)方法,以直接训练尖峰尖峰深度Q网络。实验表明,与最先进的ANN-SNN转换方法和其他SDQN作品相比,建议的PBLN Spiking Deep Q Networks(PL-SDQN)在Atari游戏任务上取得了更好的性能。
translated by 谷歌翻译
尖峰神经网络(SNN)是一种受脑启发的模型,具有更时空的信息处理能力和计算能效效率。但是,随着SNN深度的增加,由SNN​​的重量引起的记忆问题逐渐引起了人们的注意。受到人工神经网络(ANN)量化技术的启发,引入了二进制SNN(BSNN)来解决记忆问题。由于缺乏合适的学习算法,BSNN通常由ANN-SNN转换获得,其准确性将受到训练有素的ANN的限制。在本文中,我们提出了具有准确性损失估计器的超低潜伏期自适应局部二进制二进制尖峰神经网络(ALBSNN),该网络层动态选择要进行二进制的网络层,以通过评估由二进制重量引起的错误来确保网络的准确性在网络学习过程中。实验结果表明,此方法可以将存储空间降低超过20%,而不会丢失网络准确性。同时,为了加速网络的训练速度,引入了全球平均池(GAP)层,以通过卷积和合并的组合替换完全连接的层,以便SNN可以使用少量时间获得更好识别准确性的步骤。在仅使用一个时间步骤的极端情况下,我们仍然可以在三个不同的数据集(FashionMnist,CIFAR-10和CIFAR-10和CIFAR-100)上获得92.92%,91.63%和63.54%的测试精度。
translated by 谷歌翻译