我们在Nengo框架上介绍了基于纯净的神经网络(SNN)的基于稀疏分布式存储器(SDM)。我们基于Furber等人,2004年之前的工作,使用N-y-y of-of-modes实现SDM。作为SDM设计的组成部分,我们已经在Nengo上实现了使用SNN的相关矩阵存储器(CMM)。我们的SNN实施采用漏水集成和火(LIF)在Nengo上尖刺神经元模型。我们的目标是了解基于SNN的SDMS与传统SDMS相比如何进行。为此,我们在Nengo模拟了基于常规和基于SNN的SDM和CMM。我们观察到基于SNN的模型类似于传统的模型。为了评估不同SNN的性能,我们使用Adaptive-Lif,Spiking整流线性单元和Izhikevich模型重复实验并获得了类似的结果。我们得出结论,使用内存的神经元制定一些类型的关联存储器,其内存容量和其他功能类似于没有SNN的性能,确实可行。最后,我们已经实现了一个应用程序,其中使用N-M个代码编码的Mnist图像与其标签相关联并存储在基于SNN的SDM中。
translated by 谷歌翻译
这项研究提出了依赖电压突触可塑性(VDSP),这是一种新型的脑启发的无监督的本地学习规则,用于在线实施HEBB对神经形态硬件的可塑性机制。拟议的VDSP学习规则仅更新了突触后神经元的尖峰的突触电导,这使得相对于标准峰值依赖性可塑性(STDP)的更新数量减少了两倍。此更新取决于突触前神经元的膜电位,该神经元很容易作为神经元实现的一部分,因此不需要额外的存储器来存储。此外,该更新还对突触重量进行了正规化,并防止重复刺激时的重量爆炸或消失。进行严格的数学分析以在VDSP和STDP之间达到等效性。为了验证VDSP的系统级性能,我们训练一个单层尖峰神经网络(SNN),以识别手写数字。我们报告85.01 $ \ pm $ 0.76%(平均$ \ pm $ s.d。)对于MNIST数据集中的100个输出神经元网络的精度。在缩放网络大小时,性能会提高(400个输出神经元的89.93 $ \ pm $ 0.41%,500个神经元为90.56 $ \ pm $ 0.27),这验证了大规模计算机视觉任务的拟议学习规则的适用性。有趣的是,学习规则比STDP更好地适应输入信号的频率,并且不需要对超参数进行手动调整。
translated by 谷歌翻译
更具体地说,神经系统能够简单有效地解决复杂的问题,超过现代计算机。在这方面,神经形态工程是一个研究领域,重点是模仿控制大脑的基本原理,以开发实现此类计算能力的系统。在该领域中,生物启发的学习和记忆系统仍然是要解决的挑战,这就是海马涉及的地方。正是大脑的区域充当短期记忆,从而从大脑皮层的所有感觉核中学习,非结构化和快速存储信息及其随后的回忆。在这项工作中,我们提出了一个基于海马的新型生物启发的记忆模型,具有学习记忆的能力,从提示中回顾它们(与其他内容相关的记忆的一部分),甚至在尝试时忘记记忆通过相同的提示学习其他人。该模型已在使用尖峰神经网络上在大型摩托车硬件平台上实现,并进行了一组实验和测试以证明其正确且预期的操作。所提出的基于SPIKE的内存模型仅在接收输入,能提供节能的情况下才能生成SPIKES,并且需要7个时间步,用于学习步骤和6个时间段来召回以前存储的存储器。这项工作介绍了基于生物启发的峰值海马记忆模型的第一个硬件实现,为开发未来更复杂的神经形态系统的发展铺平了道路。
translated by 谷歌翻译
神经形态工程由于其作为研究领域的巨大潜力而​​集中了大量研究人员的努力,以寻找对生物神经系统的优势的利用,而整个大脑的优势是设计更有效,更真实的 - 有能力的应用程序。为了开发尽可能接近生物学的应用,使用了尖峰神经网络(SNN),被认为是生物学上的,并构成了第三代人工神经网络(ANN)。由于某些基于SNN的应用程序可能需要存储数据才能以后使用,因此在数字电路中既存在,又以某种形式,在生物学中,需要尖峰内存。这项工作介绍了内存的尖峰实现,这是计算机架构中最重要的组件之一,在设计完全尖峰计算机时可能至关重要。在设计这种尖峰内存的过程中,还实施了不同的中间组件和测试。测试是在大三角帆神经形态平台上进行的,并允许验证用于构建所构图的方法。此外,这项工作深入研究了如何使用这种方法构建尖峰块,并包括IT和其他类似作品中使用的方法的比较,该作品着重于尖峰组件的设计,其中包括尖峰逻辑门和尖峰记忆。所有实施的块和开发的测试均可在公共存储库中提供。
translated by 谷歌翻译
Spiking neural networks (SNN) are a viable alternative to conventional artificial neural networks when energy efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains. The training of SNN has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of neurons from the output error. The loss function can then be evaluated locally for every neuron. Incorporating the desire values into the STDP weight update leads to global error minimization and increasing classification accuracy. At the same time, the neuron dynamics and computational efficiency of STDP are maintained, making it a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. Furthermore, we show that desire backpropagation is computationally less complex than backpropagation in traditional neural networks.
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
尖峰神经网络(SNN)已成为用于分类任务的硬件有效体系结构。基于尖峰的编码的惩罚是缺乏完全使用尖峰执行的通用训练机制。已经进行了几项尝试,用于采用在非加速人工神经网络(ANN)中使用的强大反向传播(BP)技术:(1)SNN可以通过外部计算的数值梯度来训练。 (2)基于天然尖峰的学习的主要进步是使用具有分阶段的前向/向后传递的尖峰时间依赖性可塑性(STDP)的近似反向传播。但是,在此类阶段之间的信息传输需要外部内存和计算访问。这是神经形态硬件实现的挑战。在本文中,我们提出了一种基于随机SNN的后式Prop(SSNN-BP)算法,该算法利用复合神经元同时计算前向通行激活,并用尖峰明确计算前向传递梯度。尽管签名的梯度值是基于SPIKE的表示的挑战,但我们通过将梯度信号分为正和负流来解决这一问题。复合神经元以随机尖峰传播的形式编码信息,并将反向传播的权重更新转换为时间和空间上局部离散的STDP类似STDP的Spike Concike更新,使其与硬件友好的电阻式处理单元(RPU)兼容。此外,我们的方法使用足够长的尖峰训练来接近BP ANN基线。最后,我们表明,可以通过强制执行胜利者的抑制性横向连接来实现软磁体交叉渗透损失函数。我们的SNN通过与MNIST,时尚和扩展的MNIST数据集的ANN相当的性能来表现出极好的概括。因此,SSNN-BP可以使BP与纯粹基于尖峰的神经形态硬件兼容。
translated by 谷歌翻译
深度神经网络在关键视觉挑战(例如对象识别)中超过了人类的表现,但需要大量的能量,计算和记忆。相反,尖峰神经网络(SNN)具有提高对象识别系统的效率和生物学合理性的潜力。在这里,我们提出了一种SNN模型,该模型使用Spike-Latency编码和赢家全部抑制(WTA-I)有效地表示时尚MNIST数据集的视觉刺激。将刺激用中心旋转的接受场进行预处理,然后喂入一层尖刺神经元,其突触权重使用Spike-Timing依赖性塑性(STDP)进行更新。我们研究了代表对象的质量如何在不同的WTA-I方案下变化,并证明150个尖峰神经元的网络可以有效地表示40个尖峰的对象。研究如何使用SNN中的生物学上合理的学习规则来研究核心对象识别,这不仅可能进一步我们对大脑的理解,而且还会导致新颖而有效的人工视觉系统。
translated by 谷歌翻译
为了在专门的神经形态硬件中进行节能计算,我们提出了尖峰神经编码,这是基于预测性编码理论的人工神经模型家族的实例化。该模型是同类模型,它是通过在“猜测和检查”的永无止境过程中运行的,神经元可以预测彼此的活动值,然后调整自己的活动以做出更好的未来预测。我们系统的互动性,迭代性质非常适合感官流预测的连续时间表述,并且如我们所示,模型的结构产生了局部突触更新规则,可以用来补充或作为在线峰值定位的替代方案依赖的可塑性。在本文中,我们对模型的实例化进行了实例化,该模型包括泄漏的集成和火灾单元。但是,我们系统所在的框架自然可以结合更复杂的神经元,例如Hodgkin-Huxley模型。我们在模式识别方面的实验结果证明了当二进制尖峰列车是通信间通信的主要范式时,模型的潜力。值得注意的是,尖峰神经编码在分类绩效方面具有竞争力,并且在从任务序列中学习时会降低遗忘,从而提供了更经济的,具有生物学上的替代品,可用于流行的人工神经网络。
translated by 谷歌翻译
We propose a novel backpropagation algorithm for training spiking neural networks (SNNs) that encodes information in the relative multiple spike timing of individual neurons without single-spike restrictions. The proposed algorithm inherits the advantages of conventional timing-based methods in that it computes accurate gradients with respect to spike timing, which promotes ideal temporal coding. Unlike conventional methods where each neuron fires at most once, the proposed algorithm allows each neuron to fire multiple times. This extension naturally improves the computational capacity of SNNs. Our SNN model outperformed comparable SNN models and achieved as high accuracy as non-convolutional artificial neural networks. The spike count property of our networks was altered depending on the time constant of the postsynaptic current and the membrane potential. Moreover, we found that there existed the optimal time constant with the maximum test accuracy. That was not seen in conventional SNNs with single-spike restrictions on time-to-fast-spike (TTFS) coding. This result demonstrates the computational properties of SNNs that biologically encode information into the multi-spike timing of individual neurons. Our code would be publicly available.
translated by 谷歌翻译
我们提出了一种新的学习算法,使用传统的人工神经网络(ANN)作为代理训练尖刺神经网络(SNN)。我们分别与具有相同网络架构和共享突触权重的集成和火(IF)和Relu神经元进行两次SNN和ANN网络。两个网络的前进通过完全独立。通过假设具有速率编码的神经元作为Relu的近似值,我们将SNN中的SNN的误差进行了回复,以更新共享权重,只需用SNN的ANN最终输出替换ANN最终输出。我们将建议的代理学习应用于深度卷积的SNNS,并在Fahion-Mnist和CiFar10的两个基准数据集上进行评估,分别为94.56%和93.11%的分类准确性。所提出的网络可以优于培训的其他深鼻涕,训练,替代学习,代理梯度学习,或从深处转换。转换的SNNS需要长时间的仿真时间来达到合理的准确性,而我们的代理学习导致高效的SNN,模拟时间较短。
translated by 谷歌翻译
穗状花序的神经形状硬件占据了深度神经网络(DNN)的更节能实现的承诺,而不是GPU的标准硬件。但这需要了解如何在基于事件的稀疏触发制度中仿真DNN,否则能量优势丢失。特别地,解决序列处理任务的DNN通常采用难以使用少量尖峰效仿的长短期存储器(LSTM)单元。我们展示了许多生物神经元的面部,在每个尖峰后缓慢的超积极性(AHP)电流,提供了有效的解决方案。 AHP电流可以轻松地在支持多舱神经元模型的神经形状硬件中实现,例如英特尔的Loihi芯片。滤波近似理论解释为什么AHP-Neurons可以模拟LSTM单元的功能。这产生了高度节能的时间序列分类方法。此外,它为实现了非常稀疏的大量大型DNN来实现基础,这些大型DNN在文本中提取单词和句子之间的关系,以便回答有关文本的问题。
translated by 谷歌翻译
Emergence of deep neural networks (DNNs) has raised enormous attention towards artificial neural networks (ANNs) once again. They have become the state-of-the-art models and have won different machine learning challenges. Although these networks are inspired by the brain, they lack biological plausibility, and they have structural differences compared to the brain. Spiking neural networks (SNNs) have been around for a long time, and they have been investigated to understand the dynamics of the brain. However, their application in real-world and complicated machine learning tasks were limited. Recently, they have shown great potential in solving such tasks. Due to their energy efficiency and temporal dynamics there are many promises in their future development. In this work, we reviewed the structures and performances of SNNs on image classification tasks. The comparisons illustrate that these networks show great capabilities for more complicated problems. Furthermore, the simple learning rules developed for SNNs, such as STDP and R-STDP, can be a potential alternative to replace the backpropagation algorithm used in DNNs.
translated by 谷歌翻译
由于它们的低能量消耗,对神经形态计算设备上的尖刺神经网络(SNNS)越来越兴趣。最近的进展使培训SNNS在精度方面开始与传统人工神经网络(ANNS)进行竞争,同时在神经胸壁上运行时的节能。然而,培训SNNS的过程仍然基于最初为ANNS开发的密集的张量操作,这不利用SNN的时空稀疏性质。我们在这里介绍第一稀疏SNN BackPropagation算法,该算法与最新的现有技术实现相同或更好的准确性,同时显着更快,更高的记忆力。我们展示了我们对不同复杂性(时尚 - MNIST,神经影像学 - MNIST和Spiking Heidelberg数字的真实数据集的有效性,在不失精度的情况下实现了高达150倍的后向通行证的加速,而不会减少精度。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
我们提出了Memprop,即采用基于梯度的学习来培训完全的申请尖峰神经网络(MSNNS)。我们的方法利用固有的设备动力学来触发自然产生的电压尖峰。这些由回忆动力学发出的尖峰本质上是类似物,因此完全可区分,这消除了尖峰神经网络(SNN)文献中普遍存在的替代梯度方法的需求。回忆性神经网络通常将备忘录集成为映射离线培训网络的突触,或者以其他方式依靠关联学习机制来训练候选神经元的网络。相反,我们直接在循环神经元和突触的模拟香料模型上应用了通过时间(BPTT)训练算法的反向传播。我们的实现是完全的综合性,因为突触重量和尖峰神经元都集成在电阻RAM(RRAM)阵列上,而无需其他电路来实现尖峰动态,例如模数转换器(ADCS)或阈值比较器。结果,高阶电物理效应被充分利用,以在运行时使用磁性神经元的状态驱动动力学。通过朝着非同一梯度的学习迈进,我们在以前报道的几个基准上的轻巧密集的完全MSNN中获得了高度竞争的准确性。
translated by 谷歌翻译
尖峰神经网络由于其在专门硬件上的高能源效率而在机器人技术中具有巨大的潜在效用,但是概念验证的实现通常尚未通过常规方法实现竞争性能或能力。在本文中,我们通过引入一种新型的模块化整体网络方法来应对可扩展性的关键实践挑战之一,在这种方法中,紧凑的,本地化的尖峰网络每个人都学习,并且仅负责仅在环境的局部地区识别位置。这种模块化方法创建了一个高度可扩展的系统。但是,它带来了高性能的成本,在部署时间缺乏全球正规化会导致过度活跃的神经元,这些神经元错误地对其博学地区以外的地方做出了错误的反应。我们的第二个贡献介绍了一种正则化方法,该方法在初始环境学习阶段检测并消除了这些有问题的多动神经元。我们在基准定位数据集Nordland和Oxford Robotcar上评估了这种新的可扩展模块化系统,并与标准技术Netvlad和SAD进行了比较,以及先前的尖峰神经网络系统。我们的系统在其小数据集上大大优于先前的SNN系统,但在27倍的基准数据集上保持了性能,在该数据集上,以前系统的操作在计算上是不可行的,并且与常规定位系统竞争性能。
translated by 谷歌翻译
超低功耗本地信号处理是始终安装在设备上的边缘应用的关键方面。尖刺神经网络的神经形态处理器显示出很大的计算能力,同时根据该领域的需要满足有限的电力预算。在这项工作中,我们提出了尖峰神经动力学作为扩张时间卷积的自然替代品。我们将这个想法扩展到WaveSense,这是一个由Wavenet Architects的激发灵感的尖峰神经网络。WaveSense使用简单的神经动力学,固定时间常数和简单的前馈结构,因此特别适用于神经形态实现。我们在几个数据集中测试此模型的功能,以用于关键字斑点。结果表明,该网络击败了其他尖刺神经网络的领域,并达到了诸如CNN和LSTM的人工神经网络的最先进的性能。
translated by 谷歌翻译
Efficient and robust control using spiking neural networks (SNNs) is still an open problem. Whilst behaviour of biological agents is produced through sparse and irregular spiking patterns, which provide both robust and efficient control, the activity patterns in most artificial spiking neural networks used for control are dense and regular -- resulting in potentially less efficient codes. Additionally, for most existing control solutions network training or optimization is necessary, even for fully identified systems, complicating their implementation in on-chip low-power solutions. The neuroscience theory of Spike Coding Networks (SCNs) offers a fully analytical solution for implementing dynamical systems in recurrent spiking neural networks -- while maintaining irregular, sparse, and robust spiking activity -- but it's not clear how to directly apply it to control problems. Here, we extend SCN theory by incorporating closed-form optimal estimation and control. The resulting networks work as a spiking equivalent of a linear-quadratic-Gaussian controller. We demonstrate robust spiking control of simulated spring-mass-damper and cart-pole systems, in the face of several perturbations, including input- and system-noise, system disturbances, and neural silencing. As our approach does not need learning or optimization, it offers opportunities for deploying fast and efficient task-specific on-chip spiking controllers with biologically realistic activity.
translated by 谷歌翻译
Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However, training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss of performance has been a challenge. Here we propose an exact mapping from a network with Rectified Linear Units (ReLUs) to an SNN that fires exactly one spike per neuron. For our constructive proof, we assume that an arbitrary multi-layer ReLU network with or without convolutional layers, batch normalization and max pooling layers was trained to high performance on some training set. Furthermore, we assume that we have access to a representative example of input data used during training and to the exact parameters (weights and biases) of the trained ReLU network. The mapping from deep ReLU networks to SNNs causes zero percent drop in accuracy on CIFAR10, CIFAR100 and the ImageNet-like data sets Places365 and PASS. More generally our work shows that an arbitrary deep ReLU network can be replaced by an energy-efficient single-spike neural network without any loss of performance.
translated by 谷歌翻译