元梯度方法(Xu等,2018; Zahavy等,2020)为非平稳加强学习问题中的超参数选择和适应性提供了有希望的解决方案。但是,尚未系统地研究此类环境中元梯度的特性。在这项工作中,我们在非平稳环境中对元级别的新清晰度进行了新的清晰度。具体而言,我们问:(i)应向学习的优化者提供多少信息,以使一生中更快地适应和概括,(ii)在此过程中学习了什么元访问功能,以及(iii)是否)元梯度方法在高度非平稳的环境中提供了更大的优势。为了研究提供给元淘汰的信息的影响,如最近的作品(Flennerhag等,2021; Almeida等,2021),我们用学识渊博的元参数功能替换了固定更新规则的调谐元参数选定的上下文功能。上下文功能携带有关代理性能和环境变化的信息,因此可以告知学习的元参数计划。我们发现,添加更多的上下文信息通常是有益的,从而导致元参数值更快地适应并在一生中提高绩效。我们通过对结果的元参数计划和上下文特征的学习功能进行定性分析来支持这些结果。最后,我们发现没有上下文,在高度非平稳的环境中,元梯度并不能比基线提供一致的优势。我们的发现表明,情境化的元梯度可以在非平稳设置中的元梯度中提取高性能方面发挥关键作用。
translated by 谷歌翻译
深入学习的强化学习(RL)的结合导致了一系列令人印象深刻的壮举,许多相信(深)RL提供了一般能力的代理。然而,RL代理商的成功往往对培训过程中的设计选择非常敏感,这可能需要繁琐和易于易于的手动调整。这使得利用RL对新问题充满挑战,同时也限制了其全部潜力。在许多其他机器学习领域,AutomL已经示出了可以自动化这样的设计选择,并且在应用于RL时也会产生有希望的初始结果。然而,自动化强化学习(AutorL)不仅涉及Automl的标准应用,而且还包括RL独特的额外挑战,其自然地产生了不同的方法。因此,Autorl已成为RL中的一个重要研究领域,提供来自RNA设计的各种应用中的承诺,以便玩游戏等游戏。鉴于RL中考虑的方法和环境的多样性,在不同的子领域进行了大部分研究,从Meta学习到进化。在这项调查中,我们寻求统一自动的领域,我们提供常见的分类法,详细讨论每个区域并对研究人员来说是一个兴趣的开放问题。
translated by 谷歌翻译
Hierarchical methods in reinforcement learning have the potential to reduce the amount of decisions that the agent needs to perform when learning new tasks. However, finding a reusable useful temporal abstractions that facilitate fast learning remains a challenging problem. Recently, several deep learning approaches were proposed to learn such temporal abstractions in the form of options in an end-to-end manner. In this work, we point out several shortcomings of these methods and discuss their potential negative consequences. Subsequently, we formulate the desiderata for reusable options and use these to frame the problem of learning options as a gradient-based meta-learning problem. This allows us to formulate an objective that explicitly incentivizes options which allow a higher-level decision maker to adjust in few steps to different tasks. Experimentally, we show that our method is able to learn transferable components which accelerate learning and performs better than existing prior methods developed for this setting. Additionally, we perform ablations to quantify the impact of using gradient-based meta-learning as well as other proposed changes.
translated by 谷歌翻译
Deep reinforcement learning algorithms require large amounts of experience to learn an individual task. While in principle meta-reinforcement learning (meta-RL) algorithms enable agents to learn new skills from small amounts of experience, several major challenges preclude their practicality. Current methods rely heavily on on-policy experience, limiting their sample efficiency. The also lack mechanisms to reason about task uncertainty when adapting to new tasks, limiting their effectiveness in sparse reward problems. In this paper, we address these challenges by developing an offpolicy meta-RL algorithm that disentangles task inference and control. In our approach, we perform online probabilistic filtering of latent task variables to infer how to solve a new task from small amounts of experience. This probabilistic interpretation enables posterior sampling for structured and efficient exploration. We demonstrate how to integrate these task variables with off-policy RL algorithms to achieve both metatraining and adaptation efficiency. Our method outperforms prior algorithms in sample efficiency by 20-100X as well as in asymptotic performance on several meta-RL benchmarks.
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
元梯度提供了一种一般方法,以优化增强学习算法(RL)算法的元参数。元梯度的估计对于这些元算法的性能至关重要,并且已经在MAML式短距离元元RL问题的情况下进行了研究。在这种情况下,先前的工作调查了对RL目标的Hessian的估计,并通过进行抽样校正来解决信贷分配问题,以解决预先适应行为。但是,我们表明,例如由DICE及其变体实施的Hessian估计始终会增加偏差,还可以为元梯度估计增加差异。同时,在重要的长马设置中,元梯度估计的研究较少,在这种情况下,通过完整的内部优化轨迹的反向传播是不可行的。我们研究了截短的反向传播和采样校正引起的偏见和差异权衡,并与进化策略进行了比较,这是最近流行的长期替代策略。虽然先前的工作隐含地选择了这个偏见变化空间中的点,但我们解散了偏见和差异的来源,并提出了将现有估计器相互关联的经验研究。
translated by 谷歌翻译
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objective and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
translated by 谷歌翻译
机器学习算法中多个超参数的最佳设置是发出大多数可用数据的关键。为此目的,已经提出了几种方法,例如进化策略,随机搜索,贝叶斯优化和启发式拇指规则。在钢筋学习(RL)中,学习代理在与其环境交互时收集的数据的信息内容严重依赖于许多超参数的设置。因此,RL算法的用户必须依赖于基于搜索的优化方法,例如网格搜索或Nelder-Mead单简单算法,这对于大多数R1任务来说是非常效率的,显着减慢学习曲线和离开用户的速度有目的地偏见数据收集的负担。在这项工作中,为了使RL算法更加用户独立,提出了一种使用贝叶斯优化的自主超参数设置的新方法。来自过去剧集和不同的超参数值的数据通过执行行为克隆在元学习水平上使用,这有助于提高最大化获取功能的加强学习变体的有效性。此外,通过紧密地整合在加强学习代理设计中的贝叶斯优化,还减少了收敛到给定任务的最佳策略所需的状态转换的数量。与其他手动调整和基于优化的方法相比,计算实验显示了有希望的结果,这突出了改变算法超级参数来增加所生成数据的信息内容的好处。
translated by 谷歌翻译
Meta-Renifiltive学习(Meta-RL)已被证明是利用事先任务的经验,以便快速学习新的相关任务的成功框架,但是,当前的Meta-RL接近在稀疏奖励环境中学习的斗争。尽管现有的Meta-RL算法可以学习适应新的稀疏奖励任务的策略,但是使用手形奖励功能来学习实际适应策略,或者需要简单的环境,其中随机探索足以遇到稀疏奖励。在本文中,我们提出了对Meta-RL的后视抢购的制定,该rl抢购了在Meta培训期间的经验,以便能够使用稀疏奖励完全学习。我们展示了我们的方法在套件挑战稀疏奖励目标达到的环境中,以前需要密集的奖励,以便在Meta训练中解决。我们的方法使用真正的稀疏奖励功能来解决这些环境,性能与具有代理密集奖励功能的培训相当。
translated by 谷歌翻译
元强化学习(RL)方法可以使用比标准RL少的数据级的元培训策略,但元培训本身既昂贵又耗时。如果我们可以在离线数据上进行元训练,那么我们可以重复使用相同的静态数据集,该数据集将一次标记为不同任务的奖励,以在元测试时间适应各种新任务的元训练策略。尽管此功能将使Meta-RL成为现实使用的实用工具,但离线META-RL提出了除在线META-RL或标准离线RL设置之外的其他挑战。 Meta-RL学习了一种探索策略,该策略收集了用于适应的数据,并元培训策略迅速适应了新任务的数据。由于该策略是在固定的离线数据集上进行了元训练的,因此当适应学识渊博的勘探策略收集的数据时,它可能表现得不可预测,这与离线数据有系统地不同,从而导致分布变化。我们提出了一种混合脱机元元素算法,该算法使用带有奖励的脱机数据来进行自适应策略,然后收集其他无监督的在线数据,而无需任何奖励标签来桥接这一分配变化。通过不需要在线收集的奖励标签,此数据可以便宜得多。我们将我们的方法比较了在模拟机器人的运动和操纵任务上进行离线元rl的先前工作,并发现使用其他无监督的在线数据收集可以显着提高元训练政策的自适应能力,从而匹配完全在线的表现。在一系列具有挑战性的域上,需要对新任务进行概括。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
自成立以来,建立在广泛任务中表现出色的普通代理的任务一直是强化学习的重要目标。这个问题一直是对Alarge工作体系的研究的主题,并且经常通过观察Atari 57基准中包含的广泛范围环境的分数来衡量的性能。 Agent57是所有57场比赛中第一个超过人类基准的代理商,但这是以数据效率差的代价,需要实现近800亿帧的经验。以Agent57为起点,我们采用了各种各样的形式,以降低超过人类基线所需的经验200倍。在减少数据制度和Propose有效的解决方案时,我们遇到了一系列不稳定性和瓶颈,以构建更强大,更有效的代理。我们还使用诸如Muesli和Muzero之类的高性能方法证明了竞争性的性能。 TOOUR方法的四个关键组成部分是(1)近似信任区域方法,该方法可以从TheOnline网络中稳定引导,(2)损失和优先级的归一化方案,在学习具有广泛量表的一组值函数时,可以提高鲁棒性, (3)改进的体系结构采用了NFNET的技术技术来利用更深的网络而无需标准化层,并且(4)政策蒸馏方法可使瞬时贪婪的策略加班。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
尽管在许多具有挑战性的问题中取得了成功,但增强学习(RL)仍然面临样本效率低下,可以通过将先验知识引入代理人来缓解。但是,在加强学习方面的许多转移技术使教师是专家的局限性假设。在本文中,我们将增强学习中的行动作为推理框架 - 即,在每个状态下的行动分布,类似于教师政策,而不是贝叶斯的先验 - 恢复最先进的策略蒸馏技术。然后,我们提出了一类自适应方法,这些方法可以通过结合奖励成型和辅助正则化损失来鲁sumply动作先验。与先前的工作相反,我们开发了利用次优的动作先验的算法,这些算法可能仍然传授有价值的知识 - 我们称之为软动作先验。拟议的算法通过根据教师在每个州的有用性的估计来调整教师反馈的强度来适应。我们执行表格实验,这表明所提出的方法达到了最先进的性能,在从次优先的先验中学习时超过了它。最后,我们证明了自适应算法在连续动作中的鲁棒性深度RL问题,与现有的策略蒸馏方法相比,自适应算法显着提高了稳定性。
translated by 谷歌翻译
Meta强化学习(META-RL)旨在学习一项政策,同时并迅速适应新任务。它需要大量从培训任务中汲取的数据,以推断任务之间共享的共同结构。如果没有沉重的奖励工程,长期任务中的稀疏奖励加剧了元RL样品效率的问题。 Meta-RL中的另一个挑战是任务之间难度级别的差异,这可能会导致一个简单的任务主导共享策略的学习,从而排除政策适应新任务。这项工作介绍了一个新颖的目标功能,可以在培训任务中学习动作翻译。从理论上讲,我们可以验证带有操作转换器的传输策略的值可以接近源策略的值和我们的目标函数(大约)上限的值差。我们建议将动作转换器与基于上下文的元元算法相结合,以更好地收集数据,并在元训练期间更有效地探索。我们的方法从经验上提高了稀疏奖励任务上元RL算法的样本效率和性能。
translated by 谷歌翻译
近年来,基于梯度的Meta-RL(GMRL)方法在发现一个单一任务的有效在线超参数中取得了显着的成功(XU等,2018)或学习多任务转移学习的良好初始化(Finn等人。 ,2017)。尽管有经验的成功,但经常被忽视,通过香草背交计算元梯度是不明定义的。在本文中,我们认为许多现有的MGRL方法采用的随机元梯度估计实际上是偏见的;偏差来自两个来源:1)在组成优化问题的结构中自然的成分偏差和2)由直接自动分化引起的多步粗糙估计的偏差。为了更好地了解元梯度偏差,我们首先执行其研究,以量化每个研究。我们首先为现有的GMRL算法提供统一的推导,然后理论上分析偏差和现有梯度估计方法的方差。了解偏见的基本原则,我们提出了两种缓解解决方案,基于脱离政策校正和多步理估计技术。已经进行了综合烧蚀研究,结果显示:(1)当与不同估计器/示例大小/步骤和学习率相结合时,它们的存在以及它们如何影响元梯度估计。 (2)这些缓解方法对Meta梯度估计的有效性,从而最终回报率两种实用的Meta-RL算法:Lola-Dice和Meta-梯度加固学习。
translated by 谷歌翻译
元钢筋学习(Meta-RL)算法使得能够快速适应动态环境中的少量样本的任务。通过代理策略网络中的动态表示(通过推理关于任务上下文,模型参数更新或两者)获得的动态表示来实现这样的壮举。然而,由于在策略网络上满足不同的政策,因此获得了超越简单基准问题的快速适应的丰富动态表示是具有挑战性的。本文通过将神经调节引入模块化组件来解决挑战,以增加调节神经元活动的标准策略网络,以便为任务适应提供有效的动态表示。策略网络的建议扩展是在越来越复杂的多个离散和连续控制环境中进行评估。为了证明在Meta-R1中的延伸的一般性和益处,将神经调序的网络应用于两个最先进的META-RL算法(胱瓦和珍珠)。结果表明,与基线相比,通过神经调节增强的Meta-R1产生明显更好的结果和更丰富的动态表示。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
我们通过在计算图的空间中搜索计算基于值的无模型RL代理以优化的计算函数来提出一种用于元学习增强学习算法的方法。学到的算法是域 - 不可思议的,可以推广到训练期间未见的新环境。我们的方法既可以从头开始学习,又可以从已知的现有算法(例如DQN)学习,从而实现可解释的修改,从而改善性能。从头开始学习简单的经典控制和网格世界任务,我们的方法重新发现了时间差异(TD)算法。我们从DQN进行了引导,我们重点介绍了两种学到的算法,这些算法比其他经典控制任务,GridWorld类型任务和Atari游戏获得了良好的概括性能。对学习算法行为的分析表明,与最近提出的RL算法相似,该算法解决了基于价值的方法的高估。
translated by 谷歌翻译
我们确定和研究政策流失的现象,即基于价值的强化学习中贪婪政策的快速变化。政策流失以惊人的快速步伐运作,改变了少数学习更新(在Atari上的DQN等典型的深层RL设置中)中大量州的贪婪行动。我们从经验上表征了现象,验证它不限于特定算法或环境特性。许多消融有助于削弱关于为什么流失仅与深度学习有关的少数相关的合理解释。最后,我们假设政策流失是一种有益但被忽视的隐性探索形式,它以新鲜的方式铸造了$ \ epsilon $ greedy探索,即$ \ epsilon $ - noise的作用比预期的要小得多。
translated by 谷歌翻译