因果推论已成为处理分布外(OOD)概括问题的强大工具,该问题旨在提取不变特征。但是,常规方法从多个数据拆分中应用因果学习者,这可能会从数据分布中产生偏见的表示学习,并且在异质源中不变特征学习中的难度。为了解决这些问题,本文介绍了平衡的元考生学习者(BMCL),其中包括平衡的任务生成模块(BTG)和元伴侣特征学习模块(MCFL)。具体而言,BTG模块学会通过一种自我学习的分区算法来生成平衡子集,该算法对示例类和上下文的比例有限制。 MCFL模块训练一个适合不同分布的元学习者。在NICO ++数据集上进行的实验验证了BMCL有效地标识了类不变的视觉区域进行分类,并可以作为改善最先进方法的性能的一般框架。
translated by 谷歌翻译
分布式概括(OOD)都是关于对环境变化的学习不变性。如果每个类中的上下文分布均匀分布,则OOD将是微不足道的,因为由于基本原则,可以轻松地删除上下文:类是上下文不变的。但是,收集这种平衡的数据集是不切实际的。学习不平衡的数据使模型偏见对上下文,从而伤害了OOD。因此,OOD的关键是上下文平衡。我们认为,在先前工作中广泛采用的假设,可以直接从偏见的类预测中注释或估算上下文偏差,从而使上下文不完整甚至不正确。相比之下,我们指出了上述原则的另一面:上下文对于类也不变,这激励我们将类(已经被标记为已标记的)视为不同环境以解决上下文偏见(没有上下文标签)。我们通过最大程度地减少阶级样本相似性的对比损失,同时确保这种相似性在所有类别中不变,从而实现这一想法。在具有各种上下文偏见和域间隙的基准测试中,我们表明,配备了我们上下文估计的简单基于重新加权的分类器实现了最新的性能。我们在https://github.com/simpleshinobu/irmcon上提供了附录中的理论理由和代码。
translated by 谷歌翻译
机器学习系统通常假设训练和测试分布是相同的。为此,关键要求是开发可以概括到未经看不见的分布的模型。领域泛化(DG),即分销概括,近年来引起了越来越令人利益。域概括处理了一个具有挑战性的设置,其中给出了一个或几个不同但相关域,并且目标是学习可以概括到看不见的测试域的模型。多年来,域概括地区已经取得了巨大进展。本文提出了对该地区最近进步的首次审查。首先,我们提供了域泛化的正式定义,并讨论了几个相关领域。然后,我们彻底审查了与域泛化相关的理论,并仔细分析了泛化背后的理论。我们将最近的算法分为三个类:数据操作,表示学习和学习策略,并为每个类别详细介绍几种流行的算法。第三,我们介绍常用的数据集,应用程序和我们的开放源代码库进行公平评估。最后,我们总结了现有文学,并为未来提供了一些潜在的研究主题。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
Graph machine learning has been extensively studied in both academia and industry. Although booming with a vast number of emerging methods and techniques, most of the literature is built on the in-distribution hypothesis, i.e., testing and training graph data are identically distributed. However, this in-distribution hypothesis can hardly be satisfied in many real-world graph scenarios where the model performance substantially degrades when there exist distribution shifts between testing and training graph data. To solve this critical problem, out-of-distribution (OOD) generalization on graphs, which goes beyond the in-distribution hypothesis, has made great progress and attracted ever-increasing attention from the research community. In this paper, we comprehensively survey OOD generalization on graphs and present a detailed review of recent advances in this area. First, we provide a formal problem definition of OOD generalization on graphs. Second, we categorize existing methods into three classes from conceptually different perspectives, i.e., data, model, and learning strategy, based on their positions in the graph machine learning pipeline, followed by detailed discussions for each category. We also review the theories related to OOD generalization on graphs and introduce the commonly used graph datasets for thorough evaluations. Finally, we share our insights on future research directions. This paper is the first systematic and comprehensive review of OOD generalization on graphs, to the best of our knowledge.
translated by 谷歌翻译
几乎没有弹出的文本分类旨在在几个弹奏方案下对文本进行分类。以前的大多数方法都采用基于优化的元学习来获得任务分布。但是,由于少数样本和复杂模型之间的匹配以及有用的任务功能之间的区别,这些方法遭受了过度拟合问题的影响。为了解决这个问题,我们通过梯度相似性(AMGS)方法提出了一种新颖的自适应元学习器,以提高模型的泛化能力。具体而言,拟议的AMG基于两个方面缓解了过度拟合:(i)通过内部循环中的自我监督的辅助任务来获取样品的潜在语义表示并改善模型的概括,(ii)利用适应性元学习者通过适应性元学习者通过梯度通过相似性,可以在外环中基底学习者获得的梯度上增加约束。此外,我们对正则化对整个框架的影响进行系统分析。对几个基准测试的实验结果表明,与最先进的优化元学习方法相比,提出的AMG始终提高了很少的文本分类性能。
translated by 谷歌翻译
域泛化(DG)的主要挑战是克服多个训练域和看不见的测试域之间的潜在分布偏移。一类流行的DG算法旨在学习在训练域中具有不变因果关系的表示。但是,某些特征,称为\ emph {伪不变特征},可能是培训域中的不变性,但不是测试域,并且可以大大降低现有算法的性能。为了解决这个问题,我们提出了一种新颖的算法,称为不变信息瓶颈(IIB),该算法学习跨越训练和测试域的最小值的最小值。通过最大限度地减少表示和输入之间的相互信息,IIB可以减轻其对伪不变特征的依赖,这对于DG是期望的。为了验证IIB原则的有效性,我们对大型DG基准进行了广泛的实验。结果表明,在两个评估度量标准中,IIB的IIIb平均超过2.8 \%和3.8 \%的准确性。
translated by 谷歌翻译
常规的去命名方法依赖于所有样品都是独立且分布相同的假设,因此最终的分类器虽然受到噪声的干扰,但仍然可以轻松地将噪声识别为训练分布的异常值。但是,在不可避免地长尾巴的大规模数据中,该假设是不现实的。这种不平衡的训练数据使分类器对尾巴类别的歧视性较小,而尾巴类别的差异化现在变成了“硬”的噪声 - 它们几乎与干净的尾巴样品一样离群值。我们将这一新挑战介绍为嘈杂的长尾分类(NLT)。毫不奇怪,我们发现大多数拖延方法无法识别出硬噪声,从而导致三个提出的NLT基准测试的性能大幅下降:Imagenet-NLT,Animal10-NLT和Food101-NLT。为此,我们设计了一个迭代嘈杂的学习框架,称为“难以容易”(H2E)。我们的引导理念是首先学习一个分类器作为噪声标识符不变的类和上下文分布变化,从而将“硬”噪声减少到“ Easy”的噪声,其删除进一步改善了不变性。实验结果表明,我们的H2E胜过最先进的方法及其在长尾设置上的消融,同时在传统平衡设置上保持稳定的性能。数据集和代码可从https://github.com/yxymessi/h2e-framework获得
translated by 谷歌翻译
模型不合时宜的元学习(MAML)是最成功的元学习技术之一。它使用梯度下降来学习各种任务之间的共同点,从而使模型能够学习其自身参数的元定义,以使用少量标记的培训数据快速适应新任务。几次学习的关键挑战是任务不确定性。尽管可以从具有大量任务的元学习中获得强大的先验,但是由于训练数据集的数量通常太小,因此无法保证新任务的精确模型。在这项研究中,首先,在选择初始化参数的过程中,为特定于任务的学习者提出了新方法,以适应性地学习选择最小化新任务损失的初始化参数。然后,我们建议对元损失部分的两种改进的方法:方法1通过比较元损失差异来生成权重,以提高几个类别时的准确性,而方法2引入了每个任务的同质不确定性,以根据多个损失,以基于多个损失。原始的梯度下降是一种增强新型类别的概括能力的方式,同时确保了准确性的提高。与以前的基于梯度的元学习方法相比,我们的模型在回归任务和少量分类中的性能更好,并提高了模型的鲁棒性,对元测试集中的学习率和查询集。
translated by 谷歌翻译
Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from labeled and unlabeled samples independently, as a result, the features are not discriminative enough. In this work, we propose a novel Cross Attention Network to address the challenging problems in few-shot classification. Firstly, Cross Attention Module is introduced to deal with the problem of unseen classes. The module generates cross attention maps for each pair of class feature and query sample feature so as to highlight the target object regions, making the extracted feature more discriminative. Secondly, a transductive inference algorithm is proposed to alleviate the low-data problem, which iteratively utilizes the unlabeled query set to augment the support set, thereby making the class features more representative. Extensive experiments on two benchmarks show our method is a simple, effective and computationally efficient framework and outperforms the state-of-the-arts.
translated by 谷歌翻译
深度学习中的混乱是一般不利的,在他们渗透特征陈述的普遍之规方面都有害。因此,学习没有干扰混淆的因果特征很重要。基于最先前的因果学习方法采用后门标准来减轻某些特定混淆的不利影响,这需要明确的混淆识别。然而,在真实的情景中,混乱通常是多种多样的,并且难以被识别。在本文中,我们提出了一种新的混淆器识别因果视觉特征学习(CICF)方法,这避免了识别混淆的需求。 CICF基于前门标准模拟不同样本中的干预,然后从优化的角度近似于对实例级干预的全局范围中间效应。通过这种方式,我们的目标是找到可靠的优化方向,避免了混淆的介入效果,以学习因果特征。此外,我们发现CICF与流行的元学习策略MAML之间的关系,并提供了MAML首次从因果学习的理论视角来解释为什么MAML工作。由于有效地学习了因果特征,我们的CICF使模型能够具有卓越的泛化能力。域泛化基准数据集的广泛实验证明了我们的CICF的有效性,从而实现了最先进的性能。
translated by 谷歌翻译
当部署和培训之间存在分配变化时,深层神经网络的性能恶化严重。域的概括(DG)旨在通过仅依靠一组源域来安全地传输模型以看不见目标域。尽管已经提出了各种DG方法,但最近的一项名为Domainbed的研究表明,其中大多数没有超过简单的经验风险最小化(ERM)。为此,我们提出了一个通用框架,该框架与现有的DG算法是正交的,并且可以始终如一地提高其性能。与以前的DG作品不同的是,在静态源模型上有希望成为通用的DG,我们提出的ADAODM会在测试时间适应不同目标域的源模型。具体而言,我们在共享域形式的特征提取器上创建多个域特异性分类器。特征提取器和分类器以对抗性方式进行了训练,其中特征提取器将输入样品嵌入到域不变的空间中,并且多个分类器捕获了每个分类器与特定源域有关的独特决策边界。在测试过程中,可以通过利用源分类器之间的预测分歧来有效地衡量目标和源域之间的分布差异。通过微调源模型以最大程度地减少测试时间的分歧,目标域特征与不变特征空间很好地对齐。我们验证了两种流行的DG方法,即ERM和Coral,以及四个DG基准,即VLCS,PACS,OfficeHome和TerrainCognita。结果表明,ADAODM稳定地提高了对看不见的域的概括能力,并实现了最先进的性能。
translated by 谷歌翻译
The task of Few-shot learning (FSL) aims to transfer the knowledge learned from base categories with sufficient labelled data to novel categories with scarce known information. It is currently an important research question and has great practical values in the real-world applications. Despite extensive previous efforts are made on few-shot learning tasks, we emphasize that most existing methods did not take into account the distributional shift caused by sample selection bias in the FSL scenario. Such a selection bias can induce spurious correlation between the semantic causal features, that are causally and semantically related to the class label, and the other non-causal features. Critically, the former ones should be invariant across changes in distributions, highly related to the classes of interest, and thus well generalizable to novel classes, while the latter ones are not stable to changes in the distribution. To resolve this problem, we propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency by replacing the patch-level information and supervision of the query images with random gallery images from different classes from the query ones. We theoretically show that such an augmentation mechanism, different from existing ones, is able to identify the causal features. To further make these features to be discriminative enough for classification, we propose Correlation-guided Reconstruction (CGR) and Hardness-Aware module for instance discrimination and easier discrimination between similar classes. Moreover, such a framework can be adapted to the unsupervised FSL scenario.
translated by 谷歌翻译
我们有兴趣从数据不足的情况下学习强大的模型,而无需任何外部预训练的检查点。首先,与足够的数据相比,我们展示了为什么数据不足会使模型更容易偏向于通常不同于测试的有限培训环境。例如,如果所有训练天鹅样本都是“白色”,则该模型可能错误地使用“白色”环境来代表内在的天鹅。然后,我们证明,均衡感应偏差可以保留类功能,而不变性电感偏差可以消除环境功能,从而使类功能概括为测试中的任何环境变化。为了将它们强加于学习,我们证明可以部署任何基于现成的基于对比度的自我监督特征学习方法;对于不变性,我们提出了一个范围的不变风险最小化(IRM),该风险最小化(IRM)有效地应对常规IRM中缺少环境注释的挑战。对现实世界基准(Vipriors,Imagenet100和Nico)的最新实验结果验证了在数据效率学习中的巨大潜力和不变性的潜力。该代码可从https://github.com/wangt-cn/eqinv获得
translated by 谷歌翻译
我们定期考虑在实践中回答反事实问题,例如“糖尿病患者会选择另一种药物,会更好吗?”。观察性研究在回答此类问题的显着性上增长,因为它们的广泛积累和比随机对照试验(RCT)比较容易获得的。最近,一些作品将表示和域的适应性引入了反事实推断。但是,大多数目前的作品都集中在二进制治疗的设置上。他们都没有认为不同治疗的样本量不平衡,尤其是由于固有的用户偏好,某些治疗组中的数据示例相对有限。在本文中,我们为反事实推断设计了一种新的算法框架,从元学习来估算单个治疗效果(元地铁)以填补上述研究空白,尤其是考虑多种不平衡治疗方法。具体而言,我们将反事实推断的治疗组之间的数据发作视为元学习任务。我们从一组有足够样品的源治疗组中训练一个元学习者,并通过梯度下降进行梯度下降,而在目标治疗中样本有限。此外,我们引入了两个互补的损失。一个是多种来源治疗的监督损失。提出了与各个治疗组之间潜在分布对齐的另一个损失,以减少差异。我们在两个现实世界数据集上执行实验,以评估推理准确性和概括能力。实验结果表明,模型元地铁匹配/跑赢大的方法。
translated by 谷歌翻译
Out-of-distribution (OOD) generalisation aims to build a model that can well generalise its learnt knowledge from source domains to an unseen target domain. However, current image classification models often perform poorly in the OOD setting due to statistically spurious correlations learning from model training. From causality-based perspective, we formulate the data generation process in OOD image classification using a causal graph. On this graph, we show that prediction P(Y|X) of a label Y given an image X in statistical learning is formed by both causal effect P(Y|do(X)) and spurious effects caused by confounding features (e.g., background). Since the spurious features are domain-variant, the prediction P(Y|X) becomes unstable on unseen domains. In this paper, we propose to mitigate the spurious effect of confounders using front-door adjustment. In our method, the mediator variable is hypothesized as semantic features that are essential to determine a label for an image. Inspired by capability of style transfer in image generation, we interpret the combination of the mediator variable with different generated images in the front-door formula and propose novel algorithms to estimate it. Extensive experimental results on widely used benchmark datasets verify the effectiveness of our method.
translated by 谷歌翻译
Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions.
translated by 谷歌翻译
Few-shot learning (FSL) is a central problem in meta-learning, where learners must efficiently learn from few labeled examples. Within FSL, feature pre-training has recently become an increasingly popular strategy to significantly improve generalization performance. However, the contribution of pre-training is often overlooked and understudied, with limited theoretical understanding of its impact on meta-learning performance. Further, pre-training requires a consistent set of global labels shared across training tasks, which may be unavailable in practice. In this work, we address the above issues by first showing the connection between pre-training and meta-learning. We discuss why pre-training yields more robust meta-representation and connect the theoretical analysis to existing works and empirical results. Secondly, we introduce Meta Label Learning (MeLa), a novel meta-learning algorithm that learns task relations by inferring global labels across tasks. This allows us to exploit pre-training for FSL even when global labels are unavailable or ill-defined. Lastly, we introduce an augmented pre-training procedure that further improves the learned meta-representation. Empirically, MeLa outperforms existing methods across a diverse range of benchmarks, in particular under a more challenging setting where the number of training tasks is limited and labels are task-specific. We also provide extensive ablation study to highlight its key properties.
translated by 谷歌翻译
域泛化(DG)方法旨在开发概括到测试分布与训练数据不同的设置的模型。在本文中,我们专注于多源零拍DG的挑战性问题,其中来自多个源域的标记训练数据可用,但无法从目标域中访问数据。虽然这个问题已成为研究的重要话题,但令人惊讶的是,将所有源数据汇集在一起​​和培训单个分类器的简单解决方案在标准基准中具有竞争力。更重要的是,即使在不同域中明确地优化不变性的复杂方法也不一定提供对ERM的非微不足道的增益。在本文中,我们首次研究了预先指定的域标签和泛化性能之间的重要链接。使用动机案例研究和分布稳健优化算法的新变种,我们首先演示了如何推断的自定义域组可以通过数据集的原始域标签来实现一致的改进。随后,我们介绍了一种用于多域泛化,Muldens的一般方法,它使用基于ERM的深度合并骨干,并通过元优化算法执行隐式域重标。使用对多个标准基准测试的经验研究,我们表明Muldens不需要定制增强策略或特定于数据集的培训过程,始终如一地优于ERM,通过显着的边距,即使在比较时也会产生最先进的泛化性能对于利用域标签的现有方法。
translated by 谷歌翻译
元学习在现有基准测试基准上的成功取决于以下假设:元训练任务的分布涵盖了元测试任务。经常违反任务不足或非常狭窄的元训练任务分布的应用中的假设会导致记忆或学习者过度拟合。最近的解决方案已追求元训练任务的增强,而同时产生正确和充分虚构任务的问题仍然是一个悬而未决的问题。在本文中,我们寻求一种方法,该方法是通过任务上采样网络从任务表示从任务表示的映射任务。此外,最终的方法将对抗性任务上采样(ATU)命名为足以生成可以通过最大化对抗性损失来最大程度地贡献最新元学习者的任务。在几乎没有正弦的回归和图像分类数据集上,我们从经验上验证了ATU在元测试性能中的最新任务增强策略的明显改善以及上采样任务的质量。
translated by 谷歌翻译