在过去的十年中,人工智能(AI)为软件系统提供了巨大的新可能性和机会,还提供了新的要求和要求。特别是,机器学习(ML)已被证明在几乎每个垂直应用域中都有用。在未来的十年中,可以预期从经典计算到量子计算(QC)的前所未有的范式转移,也许是带有量子古典混合模型的。我们认为,当涉及量子和量子古典混合应用时,模型驱动的工程(MDE)范式可以是推动者和协助者。这不仅包括自动代码生成,还包括自动模型检查和验证,以及早期设计阶段中的模型分析以及在设计时间和运行时的模型对模型转换。在本文中,愿景集中在量子AI的MDE上,尤其是物联网(IoT)和智能网络物理系统(CPS)应用程序的量子ML。
translated by 谷歌翻译
在本文中,我们展示了ML-Quadrat,这是一种基于Eclipse建模框架(EMF)和智能网络物理学(MDSE)文献中的Eclipse建模框架(EMF)和最先进的开源研究原型,用于智能网络物理系统(CPS)和物联网(物联网)。其设想的用户主要是软件开发人员,他们可能在异构物联网平台和不同的人工智能(AI)技术中,专门对机器学习(ML)具有深入的知识和技能。 ML-Quadrat在GitHub上的Apache 2.0许可证的条款下发布。此外,我们展示了Driotdata的早期工具原型,该基于Web的低码平台,目标是公民数据科学家和公民/最终用户软件开发人员。 Driotdata通过向公司提供延长版本的公司,主要是小型和中型企业(中小企业),Driotdata利用该行业中的ML-Quadrat在行业中进行了延长版本。 Driotdata的当前初步版本有三个基于Web的模型编辑器:基于文本的,基于树/形式和基于图表。后者专为问题的域专家设计或使用案例域(即IOT垂直域名),其可能在其领域中没有知识和技能。最后,在YouTube上提供演示工具的短视频:https://youtu.be/vauz25w0a5k
translated by 谷歌翻译
模型用于软件工程(SE)和人工智能(AI)。 SE模型可以在不同抽象层次的架构中指定架构,并从早期概念化和设计,从软件开发生命周期的各个阶段解决不同的问题,以验证,实施,测试和演化。然而,AI模型可以提供智能能力,例如预测和决策支持。例如,在机器学习(ml)中,这是目前是AI的最受欢迎的子学科,数学模型可能会在观察到的数据中学习有用的模式,并且可以成为能够进行预测。这项工作的目标是通过将在所述社区的模型聚集在一起并提出一种需要ML的智能系统的模型驱动软件开发的整体方法来创建协同作用。我们说明了软件模型如何能够以无缝方式创建和处理ML模型。主要焦点位于事物互联网(物联网)的领域,其中ML和模型驱动的SE都发挥着关键作用。在需要采取有针对性架构的网络物理系统的系统视角下,SE和ML子系统的集成设计环境将最能支持所得系统实现的优化和整体效率。特别是,我们实现了基于INTOMML的CL-Quadrat的所提出的方法,并使用来自物联网域的案例研究以及经验用户评估来验证它。它归还所提出的方法不仅是可行的,而且还可能有助于与IOT连接的智能网络物理系统(CPS)的软件开发的性能飞跃,以及增强的使用者的用户体验建议的建模解决方案。
translated by 谷歌翻译
在本文中,我们建议采用MDE范式来开发机器学习(ML)的软件系统,重点关注物联网(IoT)域。我们说明了如何将两种最先进的开源建模工具,即蒙蒂安娜和ML-Quadrat用于此目的,如案例研究所证明的那样。案例研究说明了使用ML使用MNIST参考数据集对手写数字的自动图像识别的ML,特别是深人造神经网络(ANN),并将机器学习组件集成到物联网系统中。随后,我们对两个框架进行了功能比较,设置了一个分析基础,以包括广泛的设计考虑因素,例如问题域,ML集成到较大系统中的方法以及支持的ML方法以及主题最近对ML社区的强烈兴趣,例如Automl和MLOP。因此,本文的重点是阐明ML域中MDE方法的潜力。这支持ML工程师开发(ML/软件)模型而不是实施代码,并通过启用ML功能作为IoT或IoT的组件的现成集成来实现设计的可重复性和模块化。网络物理系统。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
机器人系统的长期自主权隐含地需要可靠的平台,这些平台能够自然处理硬件和软件故障,行为问题或缺乏知识。基于模型的可靠平台还需要在系统开发过程中应用严格的方法,包括使用正确的构造技术来实现机器人行为。随着机器人的自治水平的提高,提供系统可靠性的提供成本也会增加。我们认为,自主机器人的可靠性可靠性可以从几种认知功能,知识处理,推理和元评估的正式模型中受益。在这里,我们为自动机器人代理的认知体系结构的生成模型提出了案例,该模型订阅了基于模型的工程和可靠性,自主计算和知识支持机器人技术的原则。
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
Cognitive Computing (COC) aims to build highly cognitive machines with low computational resources that respond in real-time. However, scholarly literature shows varying research areas and various interpretations of COC. This calls for a cohesive architecture that delineates the nature of COC. We argue that if Herbert Simon considered the design science is the science of artificial, cognitive systems are the products of cognitive science or 'the newest science of the artificial'. Therefore, building a conceptual basis for COC is an essential step into prospective cognitive computing-based systems. This paper proposes an architecture of COC through analyzing the literature on COC using a myriad of statistical analysis methods. Then, we compare the statistical analysis results with previous qualitative analysis results to confirm our findings. The study also comprehensively surveys the recent research on COC to identify the state of the art and connect the advances in varied research disciplines in COC. The study found that there are three underlaying computing paradigms, Von-Neuman, Neuromorphic Engineering and Quantum Computing, that comprehensively complement the structure of cognitive computation. The research discuss possible applications and open research directions under the COC umbrella.
translated by 谷歌翻译
气候变化已成为最大的全球性问题之一,越来越多地损害地球的居住地。最近的发展如加利福尼亚州和加拿大的非凡热浪,以及德国的毁灭性洪水指向气候变化在极端天气不断增长的频率下的作用。在过去的五十年中,天气和气候的数值模型已经看到了巨大的改善,但仍有严格的限制仍有待克服。空间和时间本地化预测是需要一个小时,以便有效适应措施,以尽量减少生命和财产丧失。基于人工智能的方法正在展示有希望的导致改进预测,但仍然受到必要硬件和软件所需的可用性来处理地球地球的规模所需的软硬件和软件的限制。量子计算是一种新兴范式,在几个领域中发现了潜在的适用性。在这种意见作品中,我们认为为量子计算机设计的人工智能算法的新发展 - 也称为量子人工智能(QAI) - 可以提供进一步进一步的气候变化科学所需的关键突破。预计天气和气候预测的改善将级联到众多社会福利。
translated by 谷歌翻译
Powerful hardware services and software libraries are vital tools for quickly and affordably designing, testing, and executing quantum algorithms. A robust large-scale study of how the performance of these platforms scales with the number of qubits is key to providing quantum solutions to challenging industry problems. Such an evaluation is difficult owing to the availability and price of physical quantum processing units. This work benchmarks the runtime and accuracy for a representative sample of specialized high-performance simulated and physical quantum processing units. Results show the QMware cloud computing service can reduce the runtime for executing a quantum circuit by up to 78% compared to the next fastest option for algorithms with fewer than 27 qubits. The AWS SV1 simulator offers a runtime advantage for larger circuits, up to the maximum 34 qubits available with SV1. Beyond this limit, QMware provides the ability to execute circuits as large as 40 qubits. Physical quantum devices, such as Rigetti's Aspen-M2, can provide an exponential runtime advantage for circuits with more than 30. However, the high financial cost of physical quantum processing units presents a serious barrier to practical use. Moreover, of the four quantum devices tested, only IonQ's Harmony achieves high fidelity with more than four qubits. This study paves the way to understanding the optimal combination of available software and hardware for executing practical quantum algorithms.
translated by 谷歌翻译
为了在工业生产中更广泛地采用AI,足够的基础设施能力至关重要。这包括简化AI与工业设备的集成,对分布式部署,监视和一致的系统配置的支持。现有的IIOT平台仍然缺乏以开放的,基于生态系统的方式灵活整合可重复使用的AI服务和相关标准(例如资产管理壳或OPC UA)的功能。这正是我们采用高度可配置的基于低代码的方法来解决我们下一个级别的智能工业生产生产生产Ecosphere(IIP-Ecosphere)平台所解决的问题。在本文中,我们介绍了该平台的设计,并根据启用AI支持的视觉质量检查的演示者讨论了早期评估。在这项早期评估活动中,学到的见解和教训补充了这一点。
translated by 谷歌翻译
用于音乐的人工智能(AI)的巨大进展,特别是对于音乐作品和访问大型数据库来通过互联网进行商业化。我们有兴趣进一步推进这一领域,专注于构成。与目前的黑盒AI方法相比,我们正在为生成音乐系统支持可解释的组成前景。特别是,我们正在从分布组成分类(Discocat)建模框架中导入方法,用于自然语言处理(NLP),由音乐语法激励。量子计算是一种新生的技术,它很可能及时影响音乐行业。因此,我们正在开创Quantum自然语言处理(QNLP)方法来开发新一代智能音乐系统。这项工作从Quantum Hardware上的孤立语言模型的先前实验实施中。在Quanthoven,曾经构建的第一概念证明,(a)表明可以编程量子计算机来学习对传送不同含义和(b)的音乐来说明这种能力如何可能会利用开发一个系统来组成有意义的音乐。在讨论当前对音乐的理解作为通信介质及其与自然语言的关系之后,本章侧重于开发的技术(a)编码音乐组合物作为量子电路,(b)设计量子分类器。章节以与系统创建的组合物的演示结束。
translated by 谷歌翻译
我们展示了一个新的开源软件,用于快速评估量子电路和绝热进化,这充分利用了硬件加速器。越来越多的Quantum Computing兴趣和Quantum硬件设备的最新发展的兴趣激励了新的高级计算工具的开发,其专注于性能和使用简单性。在这项工作中,我们介绍了一种新的Quantum仿真框架,使开发人员能够将硬件或平台实现的所有复杂方面委托给库,以便他们专注于手头的问题和量子算法。该软件采用Scratch设计,使用仿真性能,代码简单和用户友好的界面作为目标目标。它利用了硬件加速,例如多线CPU,单个GPU和多GPU设备。
translated by 谷歌翻译
本文旨在研究基于电路的混合量子卷积神经网络(QCNNS)如何在遥感的上下文中成功地在图像分类器中成功使用。通过在标准神经网络内引入量子层来丰富CNN的经典架构。本工作中提出的新型QCNN应用于土地使用和陆地覆盖(LULC)分类,选择为地球观测(EO)用例,并在欧元区数据集上测试用作参考基准。通过证明QCNN性能高于经典对应物,多标量分类的结果证明了所提出的方法的有效性。此外,各种量子电路的研究表明,利用量子纠缠的诸如最佳分类评分。本研究强调了将量子计算应用于EO案例研究的潜在能力,并为期货调查提供了理论和实验背景。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
机器学习传感器代表了嵌入式机器学习应用程序未来的范式转移。当前的嵌入式机器学习(ML)实例化遭受了复杂的整合,缺乏模块化以及数据流动的隐私和安全问题。本文提出了一个以数据为中心的范式,用于将传感器智能嵌入边缘设备上,以应对这些挑战。我们对“传感器2.0”的愿景需要将传感器输入数据和ML处理从硬件级别隔离到更广泛的系统,并提供一个薄的界面,以模拟传统传感器的功能。这种分离导致模块化且易于使用的ML传感器设备。我们讨论了将ML处理构建到嵌入式系统上控制微处理器的软件堆栈中的标准方法所带来的挑战,以及ML传感器的模块化如何减轻这些问题。 ML传感器提高了隐私和准确性,同时使系统构建者更容易将ML集成到其产品中,以简单的组件。我们提供了预期的ML传感器和说明性数据表的例子,以表现出来,并希望这将建立对话使我们朝着传感器2.0迈进。
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
在过去的十年中,机器学习彻底改变了基于视力的质量评估,卷积神经网络(CNN)现在已成为标准。在本文中,我们考虑了该开发中的潜在下一步,并描述了有效地将经典图像数据映射到量子状态并允许可靠的图像分析的Quanvolutional神经网络(QNN)算法。我们实际上演示了如何在计算机视觉中利用量子设备以及如何将量子卷积引入古典CNN中。在处理工业质量控制中的现实世界用例时,我们在Pennylane框架内实施了混合QNN模型,并从经验上观察它,可以使用比经典CNN更少的培训数据实现更好的预测。换句话说,我们从经验上观察到真正的量子优势,对于由于卓越的数据编码而引起的工业应用。
translated by 谷歌翻译
Pennylane是用于量子计算机可区分编程的Python 3软件框架。该库为近期量子计算设备提供了统一的体系结构,支持量子和连续变化的范例。 Pennylane的核心特征是能够以与经典技术(例如反向传播)兼容的方式来计算变异量子电路的梯度。因此,Pennylane扩展了在优化和机器学习中常见的自动分化算法,以包括量子和混合计算。插件系统使该框架与任何基于门的量子模拟器或硬件兼容。我们为硬件提供商提供插件,包括Xanadu Cloud,Amazon Braket和IBM Quantum,允许Pennylane优化在公开访问的量子设备上运行。在古典方面,Pennylane与加速的机器学习库(例如Tensorflow,Pytorch,Jax和Autograd)接口。 Pennylane可用于优化变分的量子本素体,量子近似优化,量子机学习模型和许多其他应用。
translated by 谷歌翻译
Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent opportunity to bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as well as digital trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
translated by 谷歌翻译