现代机器学习中的一个主要挑战是理论上了解过度参数化模型的概括属性。许多现有工具依赖于\ em统一的收敛\ em(UC),该属性在拥有时保证测试损失将接近培训损失,并在一类候选模型上均匀地进行。 Nagarajan和Kolter(2019)表明,在某些简单的线性和神经网络设置中,任何统一的融合绑定都将是空置的,这是如何在UC失败的设置中证明概括的问题。我们的主要贡献是在两个这样的环境中证明了新的概括界限,一种线性和一种非线性。我们研究了Nagarajan和Kolter的线性分类设置,以及通过非线性政权中的两层神经网络学到的二次地面真实函数。我们证明了一种新类型的边距结合,表明高于某个信号到噪声阈值,在这两种设置中,任何接近最大的最大分类器几乎都不会实现测试损失。我们的结果表明,接近最大利润很重要:虽然任何实现至少达到$(1 - \ epsilon)$的模型 - 最大额度的分数很好地概括了,但分类器可实现一半的最大值。 。我们还加强了Nagarajan和Kolter的UC不可能结果,证明了\ em单方面\ EM UC的边界和经典边界界限将在接近最大的最大量化分类器上失败。我们的分析提供了有关为什么记忆可以与概括共存的洞察力:我们表明,在发生概括但UC失败的这种挑战性方案中,近乎最大的最细边缘分类器同时包含一些可概括的组件和一些可记住数据的过度拟合组件。过度拟合组件的存在足以排除UC,但是近超级余量保证存在足够的可推广组件。
translated by 谷歌翻译
训练神经网络的一种常见方法是将所有权重初始化为独立的高斯向量。我们观察到,通过将权重初始化为独立对,每对由两个相同的高斯向量组成,我们可以显着改善收敛分析。虽然已经研究了类似的技术来进行随机输入[Daniely,Neurips 2020],但尚未使用任意输入进行分析。使用此技术,我们展示了如何显着减少两层relu网络所需的神经元数量,均在逻辑损失的参数化设置不足的情况下,大约$ \ gamma^{ - 8} $ [Ji and telgarsky,ICLR, 2020]至$ \ gamma^{ - 2} $,其中$ \ gamma $表示带有神经切线内核的分离边距,以及在与平方损失的过度参数化设置中,从大约$ n^4 $ [song [song]和Yang,2019年]至$ n^2 $,隐含地改善了[Brand,Peng,Song和Weinstein,ITCS 2021]的近期运行时间。对于参数不足的设置,我们还证明了在先前工作时改善的新下限,并且在某些假设下是最好的。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
Learned classifiers should often possess certain invariance properties meant to encourage fairness, robustness, or out-of-distribution generalization. However, multiple recent works empirically demonstrate that common invariance-inducing regularizers are ineffective in the over-parameterized regime, in which classifiers perfectly fit (i.e. interpolate) the training data. This suggests that the phenomenon of ``benign overfitting," in which models generalize well despite interpolating, might not favorably extend to settings in which robustness or fairness are desirable. In this work we provide a theoretical justification for these observations. We prove that -- even in the simplest of settings -- any interpolating learning rule (with arbitrarily small margin) will not satisfy these invariance properties. We then propose and analyze an algorithm that -- in the same setting -- successfully learns a non-interpolating classifier that is provably invariant. We validate our theoretical observations on simulated data and the Waterbirds dataset.
translated by 谷歌翻译
尽管使用对抗性训练捍卫深度学习模型免受对抗性扰动的经验成功,但到目前为止,仍然不清楚对抗性扰动的存在背后的原则是什么,而对抗性培训对神经网络进行了什么来消除它们。在本文中,我们提出了一个称为特征纯化的原则,在其中,我们表明存在对抗性示例的原因之一是在神经网络的训练过程中,在隐藏的重量中积累了某些小型密集混合物;更重要的是,对抗训练的目标之一是去除此类混合物以净化隐藏的重量。我们介绍了CIFAR-10数据集上的两个实验,以说明这一原理,并且一个理论上的结果证明,对于某些自然分类任务,使用随机初始初始化的梯度下降训练具有RELU激活的两层神经网络确实满足了这一原理。从技术上讲,我们给出了我们最大程度的了解,第一个结果证明,以下两个可以同时保持使用RELU激活的神经网络。 (1)对原始数据的训练确实对某些半径的小对抗扰动确实不舒适。 (2)即使使用经验性扰动算法(例如FGM),实际上也可以证明对对抗相同半径的任何扰动也可以证明具有强大的良好性。最后,我们还证明了复杂性的下限,表明该网络的低复杂性模型,例如线性分类器,低度多项式或什至是神经切线核,无论使用哪种算法,都无法防御相同半径的扰动训练他们。
translated by 谷歌翻译
我们证明了由例如He等人提出的广泛使用的方法。(2015年)并使用梯度下降对最小二乘损失进行训练并不普遍。具体而言,我们描述了一大批一维数据生成分布,较高的概率下降只会发现优化景观的局部最小值不好,因为它无法将其偏离偏差远离其初始化,以零移动。。事实证明,在这些情况下,即使目标函数是非线性的,发现的网络也基本执行线性回归。我们进一步提供了数值证据,表明在实际情况下,对于某些多维分布而发生这种情况,并且随机梯度下降表现出相似的行为。我们还提供了有关初始化和优化器的选择如何影响这种行为的经验结果。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
良性过度拟合,即插值模型在存在嘈杂数据的情况下很好地推广的现象,首先是在接受梯度下降训练的神经网络模型中观察到的。为了更好地理解这一经验观察,我们考虑了通过梯度下降训练的两层神经网络的概括误差,后者是随机初始化后的逻辑损失。我们假设数据来自分离良好的集体条件对数符合分布,并允许训练标签的持续部分被对手损坏。我们表明,在这种情况下,神经网络表现出良性过度拟合:它们可以驱动到零训练错误,完美拟合所有嘈杂的训练标签,并同时达到最小值最佳测试错误。与以前需要线性或基于内核预测的良性过度拟合的工作相反,我们的分析在模型和学习动力学基本上是非线性的环境中。
translated by 谷歌翻译
我们考虑与高斯数据的高维线性回归中的插值学习,并在类高斯宽度方面证明了任意假设类别中的内插器的泛化误差。将通用绑定到欧几里德常规球恢复了Bartlett等人的一致性结果。(2020)对于最小规范内插器,并确认周等人的预测。(2020)在高斯数据的特殊情况下,对于近乎最小常态的内插器。我们通过将其应用于单位来证明所界限的一般性,从而获得最小L1-NORM Interpoolator(基础追踪)的新型一致性结果。我们的结果表明,基于规范的泛化界限如何解释并用于分析良性过度装备,至少在某些设置中。
translated by 谷歌翻译
过度分化的深网络的泛化神秘具有有动力的努力,了解梯度下降(GD)如何收敛到概括井的低损耗解决方案。现实生活中的神经网络从小随机值初始化,并以分类的“懒惰”或“懒惰”或“NTK”的训练训练,分析更成功,以及最近的结果序列(Lyu和Li ,2020年; Chizat和Bach,2020; Ji和Telgarsky,2020)提供了理论证据,即GD可以收敛到“Max-ramin”解决方案,其零损失可能呈现良好。但是,仅在某些环境中证明了余量的全球最优性,其中神经网络无限或呈指数级宽。目前的纸张能够为具有梯度流动训练的两层泄漏的Relu网,无论宽度如何,都能为具有梯度流动的双层泄漏的Relu网建立这种全局最优性。分析还为最近的经验研究结果(Kalimeris等,2019)给出了一些理论上的理由,就GD的所谓简单的偏见为线性或其他“简单”的解决方案,特别是在训练中。在悲观方面,该论文表明这种结果是脆弱的。简单的数据操作可以使梯度流量会聚到具有次优裕度的线性分类器。
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
我们调查与高斯的混合的数据分享共同但未知,潜在虐待协方差矩阵的数据。我们首先考虑具有两个等级大小的组件的高斯混合,并根据最大似然估计导出最大切割整数程序。当样品的数量在维度下线性增长时,我们证明其解决方案实现了最佳的错误分类率,直到对数因子。但是,解决最大切割问题似乎是在计算上棘手的。为了克服这一点,我们开发了一种高效的频谱算法,该算法达到最佳速率,但需要一种二次样本量。虽然这种样本复杂性比最大切割问题更差,但我们猜测没有多项式方法可以更好地执行。此外,我们收集了支持统计计算差距存在的数值和理论证据。最后,我们将MAX-CUT程序概括为$ k $ -means程序,该程序处理多组分混合物的可能性不平等。它享有相似的最优性保证,用于满足运输成本不平等的分布式的混合物,包括高斯和强烈的对数的分布。
translated by 谷歌翻译
支持向量机(SVM)是一种完善的分类方法,其名称指的是称为支持向量的特定训练示例,该示例确定了分离超平面的最大边缘。与培训示例相比,当支持向量的数量少时,SVM分类器享有良好的概括属性。但是,最近的研究表明,在足够高维的线性分类问题中,尽管支持向量的扩散,但在所有训练示例都是支持向量的情况下,SVM仍可以很好地概括。在本文中,我们确定了这种支持矢量增殖现象的新的确定性等效性,并使用它们来(1)实质上扩大了该现象在高维环境中发生的条件,并且(2)证明了几乎匹配的逆向结果。
translated by 谷歌翻译
The Forster transform is a method of regularizing a dataset by placing it in {\em radial isotropic position} while maintaining some of its essential properties. Forster transforms have played a key role in a diverse range of settings spanning computer science and functional analysis. Prior work had given {\em weakly} polynomial time algorithms for computing Forster transforms, when they exist. Our main result is the first {\em strongly polynomial time} algorithm to compute an approximate Forster transform of a given dataset or certify that no such transformation exists. By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial time algorithm for {\em distribution-free} PAC learning of halfspaces. This learning result is surprising because {\em proper} PAC learning of halfspaces is {\em equivalent} to linear programming. Our learning approach extends to give a strongly polynomial halfspace learner in the presence of random classification noise and, more generally, Massart noise.
translated by 谷歌翻译
在这项工作中,我们在两层relu网络中提供了特征学习过程的表征,这些网络在随机初始化后通过梯度下降对逻辑损失进行了训练。我们考虑使用输入功能的XOR样函数生成的二进制标签的数据。我们允许不断的培训标签被对手破坏。我们表明,尽管线性分类器并不比随机猜测我们考虑的分布更好,但通过梯度下降训练的两层relu网络达到了接近标签噪声速率的概括误差。我们开发了一种新颖的证明技术,该技术表明,在初始化时,绝大多数神经元充当随机特征,仅与有用特征无关紧要,而梯度下降动力学则“放大”这些弱,随机的特征到强,有用的特征。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
在本文中,我们研究了学习最适合培训数据集的浅层人工神经网络的问题。我们在过度参数化的制度中研究了这个问题,在该制度中,观测值的数量少于模型中的参数数量。我们表明,通过二次激活,训练的优化景观这种浅神经网络具有某些有利的特征,可以使用各种局部搜索启发式方法有效地找到全球最佳模型。该结果适用于输入/输出对的任意培训数据。对于可区分的激活函数,我们还表明,适当初始化的梯度下降以线性速率收敛到全球最佳模型。该结果着重于选择输入的可实现模型。根据高斯分布和标签是根据种植的重量系数生成的。
translated by 谷歌翻译
我们在禁用的对手存在下研究公平分类,允许获得$ \ eta $,选择培训样本的任意$ \ eta $ -flaction,并任意扰乱受保护的属性。由于战略误报,恶意演员或归责的错误,受保护属性可能不正确的设定。和现有的方法,使随机或独立假设对错误可能不满足其在这种对抗环境中的保证。我们的主要贡献是在这种对抗的环境中学习公平分类器的优化框架,这些普遍存在的准确性和公平性提供了可证明的保证。我们的框架适用于多个和非二进制保护属性,专为大类线性分数公平度量设计,并且还可以处理除了受保护的属性之外的扰动。我们证明了我们框架的近密性,对自然假设类别的保证:没有算法可以具有明显更好的准确性,并且任何具有更好公平性的算法必须具有较低的准确性。凭经验,我们评估了我们对统计率的统计税务统计税率为一个对手的统计税率产生的分类机。
translated by 谷歌翻译