In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed in their behavior. The framework of Markov games allows us to widen this view to include multiple adaptive agents with interacting or competing goals. This paper considers a step in this direction in which exactly two agents with diametrically opposed goals share an environment. It describes a Q-learning-like algorithm for finding optimal policies and demonstrates its application to a simple two-player game in which the optimal policy is probabilistic.
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译
除了独奏游戏外,棋盘游戏至少需要其他玩家才能玩。因此,当对手失踪时,我们创建了人工智能(AI)代理商来对抗我们。这些AI代理是通过多种方式创建的,但是这些代理的一个挑战是,与我们相比,代理可以具有较高的能力。在这项工作中,我们描述了如何创建玩棋盘游戏的较弱的AI代理。我们使用Tic-Tac-toe,九名成员的莫里斯和曼卡拉,我们的技术使用了增强学习模型,代理商使用Q学习算法来学习这些游戏。我们展示了这些代理商如何学会完美地玩棋盘游戏,然后我们描述了制作这些代理商较弱版本的方法。最后,我们提供了比较AI代理的方法。
translated by 谷歌翻译
使用规划算法和神经网络模型的基于模型的强化学习范例最近在不同的应用中实现了前所未有的结果,导致现在被称为深度增强学习的内容。这些代理非常复杂,涉及多个组件,可能会为研究产生挑战的因素。在这项工作中,我们提出了一个适用于这些类型代理的新模块化软件架构,以及一组建筑块,可以轻松重复使用和组装,以构建基于模型的增强学习代理。这些构建块包括规划算法,策略和丢失功能。我们通过将多个这些构建块组合实现和测试经过针对三种不同的测试环境的代理来说明这种架构的使用:Cartpole,Minigrid和Tictactoe。在我们的实施中提供的一个特定的规划算法,并且以前没有用于加强学习,我们称之为Imperage Minimax,在三个测试环境中取得了良好的效果。用这种架构进行的实验表明,规划算法,政策和损失函数的最佳组合依赖性严重问题。该结果提供了证据表明,拟议的架构是模块化和可重复使用的,对想要研究新环境和技术的强化学习研究人员有用。
translated by 谷歌翻译
具有很多玩家的非合作和合作游戏具有许多应用程序,但是当玩家数量增加时,通常仍然很棘手。由Lasry和Lions以及Huang,Caines和Malham \'E引入的,平均野外运动会(MFGS)依靠平均场外近似值,以使玩家数量可以成长为无穷大。解决这些游戏的传统方法通常依赖于以完全了解模型的了解来求解部分或随机微分方程。最近,增强学习(RL)似乎有望解决复杂问题。通过组合MFGS和RL,我们希望在人口规模和环境复杂性方面能够大规模解决游戏。在这项调查中,我们回顾了有关学习MFG中NASH均衡的最新文献。我们首先确定最常见的设置(静态,固定和进化)。然后,我们为经典迭代方法(基于最佳响应计算或策略评估)提供了一个通用框架,以确切的方式解决MFG。在这些算法和与马尔可夫决策过程的联系的基础上,我们解释了如何使用RL以无模型的方式学习MFG解决方案。最后,我们在基准问题上介绍了数值插图,并以某些视角得出结论。
translated by 谷歌翻译
Safe Reinforcement Learning can be defined as the process of learning policies that maximize the expectation of the return in problems in which it is important to ensure reasonable system performance and/or respect safety constraints during the learning and/or deployment processes. We categorize and analyze two approaches of Safe Reinforcement Learning. The first is based on the modification of the optimality criterion, the classic discounted finite/infinite horizon, with a safety factor. The second is based on the modification of the exploration process through the incorporation of external knowledge or the guidance of a risk metric. We use the proposed classification to survey the existing literature, as well as suggesting future directions for Safe Reinforcement Learning.
translated by 谷歌翻译
在多机构强化学习(MARL)中,独立学习者是那些不观察系统中其他代理商的行为的学习者。由于信息的权力下放,设计独立的学习者将发挥均匀的态度是有挑战性的。本文研究了使用满足动态来指导独立学习者在随机游戏中近似平衡的可行性。对于$ \ epsilon \ geq 0 $,$ \ epsilon $ -SATISFICING策略更新规则是任何规则,指示代理在$ \ epsilon $ best-best-reversponding to to to the其余参与者的策略时不要更改其策略; $ \ epsilon $ -SATISFIFICING路径定义为当每个代理使用某些$ \ epsilon $ -SATISFIFICING策略更新规则来选择其下一个策略时,获得的联合策略序列。我们建立了关于$ \ epsilon $ - 偏离型路径的结构性结果,这些路径是$ \ epsilon $ equilibium in Symmetric $ n $ - 玩家游戏和带有两个玩家的一般随机游戏。然后,我们为$ n $玩家对称游戏提出了一种独立的学习算法,并为自我玩法的$ \ epsilon $ equilibrium提供了高可能性保证。此保证仅使用对称性,利用$ \ epsilon $ satisficing路径的先前未开发的结构。
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
Deep neural networks coupled with fast simulation and improved computation have led to recent successes in the field of reinforcement learning (RL). However, most current RL-based approaches fail to generalize since: (a) the gap between simulation and real world is so large that policy-learning approaches fail to transfer; (b) even if policy learning is done in real world, the data scarcity leads to failed generalization from training to test scenarios (e.g., due to different friction or object masses). Inspired from H ∞ control methods, we note that both modeling errors and differences in training and test scenarios can be viewed as extra forces/disturbances in the system. This paper proposes the idea of robust adversarial reinforcement learning (RARL), where we train an agent to operate in the presence of a destabilizing adversary that applies disturbance forces to the system. The jointly trained adversary is reinforced -that is, it learns an optimal destabilization policy. We formulate the policy learning as a zero-sum, minimax objective function. Extensive experiments in multiple environments (InvertedPendulum, HalfCheetah, Swimmer, Hopper and Walker2d) conclusively demonstrate that our method (a) improves training stability; (b) is robust to differences in training/test conditions; and c) outperform the baseline even in the absence of the adversary.
translated by 谷歌翻译
找到同一问题的不同解决方案是与创造力和对新颖情况的适应相关的智能的关键方面。在钢筋学习中,一套各种各样的政策对于勘探,转移,层次结构和鲁棒性有用。我们提出了各种各样的连续政策,一种发现在继承人功能空间中多样化的政策的方法,同时确保它们接近最佳。我们将问题形式形式化为受限制的马尔可夫决策过程(CMDP),目标是找到最大化多样性的政策,其特征在于内在的多样性奖励,同时对MDP的外在奖励保持近乎最佳。我们还分析了最近提出的稳健性和歧视奖励的绩效,并发现它们对程序的初始化敏感,并且可以收敛到次优溶液。为了缓解这一点,我们提出了新的明确多样性奖励,该奖励旨在最大限度地减少集合中策略的继承人特征之间的相关性。我们比较深度控制套件中的不同多样性机制,发现我们提出的明确多样性的类型对于发现不同的行为是重要的,例如不同的运动模式。
translated by 谷歌翻译
奖励是加强学习代理的动力。本文致力于了解奖励的表现,作为捕获我们希望代理人执行的任务的一种方式。我们在这项研究中涉及三个新的抽象概念“任务”,可能是可取的:(1)一组可接受的行为,(2)部分排序,或者(3)通过轨迹的部分排序。我们的主要结果证明,虽然奖励可以表达许多这些任务,但每个任务类型的实例都没有Markov奖励函数可以捕获。然后,我们提供一组多项式时间算法,其构造Markov奖励函数,允许代理优化这三种类型中的每种类型的任务,并正确确定何时不存在这种奖励功能。我们得出结论,具有证实和说明我们的理论发现的实证研究。
translated by 谷歌翻译
分布式多智能经纪增强学习(Marl)算法最近引起了兴趣激增,主要是由于深神经网络(DNN)的最新进步。由于利用固定奖励模型来学习基础值函数,传统的基于模型(MB)或无模型(MF)RL算法不可直接适用于MARL问题。虽然涉及单一代理时,基于DNN的解决方案完全良好地表现出,但是这种方法无法完全推广到MARL问题的复杂性。换句话说,尽管最近的基于DNN的DNN用于多种子体环境的方法取得了卓越的性能,但它们仍然容易出现过度,对参数选择的高敏感性,以及样本低效率。本文提出了多代理自适应Kalman时间差(MAK-TD)框架及其继任者表示的基于代表的变体,称为MAK-SR。直观地说,主要目标是利用卡尔曼滤波(KF)的独特特征,如不确定性建模和在线二阶学习。提议的MAK-TD / SR框架考虑了与高维多算法环境相关联的动作空间的连续性,并利用卡尔曼时间差(KTD)来解决参数不确定性。通过利用KTD框架,SR学习过程被建模到过滤问题,其中径向基函数(RBF)估计器用于将连续空间编码为特征向量。另一方面,对于学习本地化奖励功能,我们求助于多种模型自适应估计(MMAE),处理缺乏关于观察噪声协方差和观察映射功能的先前知识。拟议的MAK-TD / SR框架通过多个实验进行评估,该实验通过Openai Gym Marl基准实施。
translated by 谷歌翻译
Various types of Multi-Agent Reinforcement Learning (MARL) methods have been developed, assuming that agents' policies are based on true states. Recent works have improved the robustness of MARL under uncertainties from the reward, transition probability, or other partners' policies. However, in real-world multi-agent systems, state estimations may be perturbed by sensor measurement noise or even adversaries. Agents' policies trained with only true state information will deviate from optimal solutions when facing adversarial state perturbations during execution. MARL under adversarial state perturbations has limited study. Hence, in this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to study the fundamental properties of MARL under state uncertainties. We prove that the optimal agent policy and the robust Nash equilibrium do not always exist for an SAMG. Instead, we define the solution concept, robust agent policy, of the proposed SAMG under adversarial state perturbations, where agents want to maximize the worst-case expected state value. We then design a gradient descent ascent-based robust MARL algorithm to learn the robust policies for the MARL agents. Our experiments show that adversarial state perturbations decrease agents' rewards for several baselines from the existing literature, while our algorithm outperforms baselines with state perturbations and significantly improves the robustness of the MARL policies under state uncertainties.
translated by 谷歌翻译
This paper investigates conditions under which modi cations to the reward function of a Markov decision process preserve the optimal policy. It is shown that, besides the positive linear transformation familiar from utility theory, one can add a reward for transitions between states that is expressible as the di erence in value of an arbitrary potential function applied to those states. Furthermore, this is shown to be a necessary condition for invariance, in the sense that any other transformation may yield suboptimal policies unless further assumptions are made about the underlying MDP. These results shed light on the practice of reward shaping, a method used in reinforcement learning whereby additional training rewards are used to guide the learning agent. In particular, some well-known \bugs" in reward shaping procedures are shown to arise from non-potential-based rewards, and methods are given for constructing shaping potentials corresponding to distance-based and subgoalbased heuristics. We show that such potentials can lead to substantial reductions in learning time.
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
Batch reinforcement learning is a subfield of dynamic programming-based reinforcement learning. Originally defined as the task of learning the best possible policy from a fixed set of a priori-known transition samples, the (batch) algorithms developed in this field can be easily adapted to the classical online case, where the agent interacts with the environment while learning. Due to the efficient use of collected data and the stability of the learning process, this research area has attracted a lot of attention recently. In this chapter, we introduce the basic principles and the theory behind batch reinforcement learning, describe the most important algorithms, exemplarily discuss ongoing research within this field, and briefly survey real-world applications of batch reinforcement learning.
translated by 谷歌翻译
本文提出了用于学习两人零和马尔可夫游戏的小说,端到端的深钢筋学习算法。我们的目标是找到NASH平衡政策,这些策略不受对抗对手的剥削。本文与以前在广泛形式的游戏中找到NASH平衡的努力不同,这些游戏具有树结构的过渡动态和离散的状态空间,本文着重于具有一般过渡动态和连续状态空间的马尔可夫游戏。我们提出了(1)NASH DQN算法,该算法将DQN与nash finding subroutine集成在一起的联合价值函数; (2)NASH DQN利用算法,该算法还采用了指导代理商探索的剥削者。我们的算法是理论算法的实用变体,这些变体可以保证在基本表格设置中融合到NASH平衡。对表格示例和两个玩家Atari游戏的实验评估证明了针对对抗对手的拟议算法的鲁棒性,以及对现有方法的优势性能。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
随机游戏的学习可以说是多功能钢筋学习(MARL)中最标准和最基本的环境。在本文中,我们考虑在非渐近制度的随机游戏中分散的Marl。特别是,我们在大量的一般总和随机游戏(SGS)中建立了完全分散的Q学习算法的有限样本复杂性 - 弱循环SGS,包括对所有代理商的普通合作MARL设置具有相同的奖励(马尔可夫团队问题是一个特例。我们专注于实用的同时具有挑战性地设置完全分散的Marl,既不奖励也没有其他药剂的作用,每个试剂都可以观察到。事实上,每个特工都完全忘记了其他决策者的存在。表格和线性函数近似情况都已考虑。在表格设置中,我们分析了分散的Q学习算法的样本复杂性,以收敛到马尔可夫完美均衡(NASH均衡)。利用线性函数近似,结果用于收敛到线性近似平衡 - 我们提出的均衡的新概念 - 这描述了每个代理的策略是线性空间内的最佳回复(到其他代理)。还提供了数值实验,用于展示结果。
translated by 谷歌翻译
零和游戏中的理想策略不仅应授予玩家的平均奖励,不少于NASH均衡的价值,而且还应在次优时利用(自适应)对手。尽管马尔可夫游戏中的大多数现有作品都专注于以前的目标,但我们是否可以同时实现这两个目标仍然开放。为了解决这个问题,这项工作在马尔可夫游戏中与对抗对手进行了无重组学习,当时与事后最佳的固定政策竞争时。沿着这个方向,我们提出了一组新的正面和负面结果:当每个情节结束时对手的政策被揭示时,我们提出了实现$ \ sqrt {k} $的新的有效算法 - 遗憾的是(遗憾的是) 1)基线政策类别很小或(2)对手的政策类别很小。当两种条件不正确时,这与指数下限相辅相成。当未揭示对手的政策时,即使在最有利的情况下,当两者都是正确的情况下,我们也会证明统计硬度结果。我们的硬度结果比仅涉及计算硬度或需要进一步限制算法的现有硬度结果要强得多。
translated by 谷歌翻译