Machine-Learned Likelihoods (MLL) is a method that, by combining modern machine-learning classification techniques with likelihood-based inference tests, allows to estimate the experimental sensitivity of high-dimensional data sets. We extend the MLL method by including the exclusion hypothesis tests and show that the addition of Kernel Density Estimators avoids the need to bin the classifier output in order to extract the resulting one-dimensional signal and background probability density functions. We first test our method on toy models generated with multivariate Gaussian distributions, where the true probability distribution functions are known. We then apply it to a case of interest in the search for new physics at the HL-LHC, in which a $Z^\prime$ boson decays into lepton pairs, comparing the performance of our method for estimating 95\% CL exclusion limits to the results obtained applying a binned likelihood to the machine-learning classifier output.
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
在背景主导的情况下,通过机器学习和信号和背景之间的可观察者之间的高度重叠来调查LHC在LHC的新物理搜索的敏感性。我们使用两种不同的型号,XGBoost和深度神经网络,利用可观察到之间的相关性,并将这种方法与传统的切割方法进行比较。我们认为不同的方法来分析模型的输出,发现模板拟合通常比简单的切割更好地执行。通过福芙氏分解,我们可以额外了解事件运动学与机器学习模型输出之间的关系。我们认为具有亚霉素的超对称场景作为一个具体示例,但方法可以应用于更广泛的超对称模型。
translated by 谷歌翻译
我们使用神经网络研究几种简化的暗物质(DM)模型及其在LHC的签名。我们专注于通常的单声角加上缺失的横向能量通道,但要训练算法我们在2D直方图中组织数据而不是逐个事件阵列。这导致较大的性能提升,以区分标准模型(SM)和SM以及新物理信号。我们使用KineMatic单速仪功能作为输入数据,允许我们描述具有单个数据示例的模型的系列。我们发现神经网络性能不依赖于模拟的后台事件数量,如果它们作为$ s / \ sqrt {b} $函数呈现,其中$ s $和$ b $是信号和背景的数量每直方图的事件分别。这提供了对方法的灵活性,因为在这种情况下测试特定模型只需要了解新物理单次横截面。此外,我们还在关于真实DM性质的错误假设下讨论网络性能。最后,我们提出了多模型分类器以更普遍的方式搜索和识别新信号,对于下一个LHC运行。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
机器学习在加强和加速寻求新基本物理学方面发挥着至关重要的作用。我们审查了新物理学的机器学习方法和应用中,在地面高能量物理实验的背景下,包括大型强子撞机,罕见的事件搜索和中微生实验。虽然机器学习在这些领域拥有悠久的历史,但深入学习革命(2010年代初)就研究的范围和雄心而产生了定性转变。这些现代化的机器学习发展是本综述的重点。
translated by 谷歌翻译
ASTROMYRY - 天体物体的职位和运动的精确测量 - 已成为一个有希望的大道,用于在我们的银河系中表征暗物质人口。通过利用基于仿真的推断和神经网络架构的最近进步,我们介绍了一种新的方法来搜索天球暗物质引起的天体辐射数据集中的重力透镜签名。我们基于神经似然比估计的方法显示出与基于两点相关统计的现有方法相比,与测量噪声相比,对冷暗物质人群的敏感性显着提高了敏感性。我们通过将其稳健而言,展示了我们的方法的真实可行性,并且在天体测量中预期的非普通建模以及未拼模型的噪声功能。这使得机器学习作为一种强大的工具,用于使用artromicric数据表征暗物质。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
The unfolding of detector effects is crucial for the comparison of data to theory predictions. While traditional methods are limited to representing the data in a low number of dimensions, machine learning has enabled new unfolding techniques while retaining the full dimensionality. Generative networks like invertible neural networks~(INN) enable a probabilistic unfolding, which map individual events to their corresponding unfolded probability distribution. The accuracy of such methods is however limited by how well simulated training samples model the actual data that is unfolded. We introduce the iterative conditional INN~(IcINN) for unfolding that adjusts for deviations between simulated training samples and data. The IcINN unfolding is first validated on toy data and then applied to pseudo-data for the $pp \to Z \gamma \gamma$ process.
translated by 谷歌翻译
基于采样的推理技术是现代宇宙学数据分析的核心;然而,这些方法与维度不良,通常需要近似或顽固的可能性。在本文中,我们描述了截短的边际神经比率估计(TMNRE)(即所谓的基于模拟的推断的新方法)自然避免了这些问题,提高了$(i)$效率,$(ii)$可扩展性和$ (iii)推断后的后续后续的可信度。使用宇宙微波背景(CMB)的测量,我们表明TMNRE可以使用比传统马尔可夫链蒙特卡罗(MCMC)方法更少模拟器呼叫的数量级来实现融合的后海后。值得注意的是,所需数量的样本有效地独立于滋扰参数的数量。此外,称为\ MEMPH {本地摊销}的属性允许对基于采样的方法无法访问的严格统计一致性检查的性能。 TMNRE承诺成为宇宙学数据分析的强大工具,特别是在扩展宇宙学的背景下,其中传统的基于采样的推理方法所需的时间级数融合可以大大超过$ \ Lambda $ CDM等简单宇宙学模型的时间。为了执行这些计算,我们使用开源代码\ texttt {swyft}来使用TMNRE的实现。
translated by 谷歌翻译
机器学习提供了一个令人兴奋的机会,可以改善高能物理探测器中几乎所有重建对象的校准。但是,机器学习方法通常取决于训练过程中使用的示例的光谱,这是一个称为先前依赖性的问题。这是校准的不良属性,需要适用于各种环境。本文的目的是明确强调某些基于机器学习的校准策略的先前依赖性。我们展示了基于仿真和基于数据的校准的最新建议如何继承用于培训的样本的属性,这可能会导致下游分析的偏见。在基于仿真的校准的情况下,我们认为我们最近提出的高斯ANSATZ方法可以避免先前依赖性的某些陷阱,而先前独立的基于数据的基于数据仍然是一个开放的问题。
translated by 谷歌翻译
数据和标签的联合分布的KL差异目标允许在随机变异推断的一个保护伞下统一监督的学习和变异自动编码器(VAE)。统一激发了扩展的监督方案,该方案允许计算神经网络模型的合适性P值。通过神经网络摊销的条件归一化流在这种结构中至关重要。我们讨论了它们如何允许在产品空间上共同定义的后代定义的覆盖范围,例如$ \ mathbb {r}^n \ times \ times \ mathcal {s}^m $,它包含在方向上的海报。最后,系统的不确定性自然包含在变化观点中。在经典的可能性方法或其他机器学习模型中,(1)系统,(2)覆盖范围和(3)拟合优度的成分通常并非全部可用,或者至少有一个受到严格限制。相比之下,拟议的扩展监督培训和摊销标准化流量可容纳所有三个,用于在产品空间上定义的任意统计分布的变异推理,例如$ \ mathbb {r}^n \ times \ times \ ldots \ ldots \ times \ times \ mathcal {s}^m {s}^m $,没有基本数据复杂性的基本障碍。因此,它具有当代(Astro-)粒子物理学家的统计工具箱的巨大潜力。
translated by 谷歌翻译
对异常检测方法的需求不断增长,可以以模型 - 不可知的方式扩大对新颗粒的搜索。大多数新方法的建议专注于信号灵敏度。但是,选择异常事件是不够的 - 还必须有一个策略来为所选事件提供上下文。我们提出了无监督检测的第一个完整的策略,其包括信号灵敏度和用于背景估计的数据驱动方法。我们的技术由两个同时培训的autoencoders建造,被迫彼此去相关。该方法可以脱机用于非共振异常检测,也是第一个完整的在线兼容的异常检测策略。我们表明,我们的方法在为ADC2021数据挑战准备的各种信号上实现了出色的性能。
translated by 谷歌翻译
迄今为止,引力波发现的所有科学主张都依赖于候选观测值的离线统计分析,以量化相对于背景过程的重要性。 Ligo实验中这种离线检测管道中的当前基础是匹配的滤波器算法,该算法产生了基于信噪比的基于信噪比的统计量,用于对候选观测进行排名。现有的基于深度学习的尝试检测引力波,这些尝试在信号灵敏度和计算效率(计算效率)中都表现出了输出概率分数。但是,概率分数不容易集成到发现工作流程中,从而将深度学习的使用限制为迄今为止的非发现的应用程序。在本文中,引入了深度学习信噪比(DEEPSNR)检测管道,该检测管道使用了一种新方法来从深度学习分类器中生成信噪比排名统计量,从而为使用提供了第一个使用的基础在面向发现的管道中的深度学习算法。通过从第一次观察运行中识别二进制黑洞合并候选者与噪声源相对于噪声源来证明DeepSNR的性能。使用Ligo检测器响应的高保真模拟用于在物理观察物方面介绍深度学习模型的第一个灵敏度估计。还研究了在各种实验方面的DeepSNR的鲁棒性。结果为DeepSNR用于在更广泛的背景下的引力波和罕见信号的科学发现铺平了道路,从而有可能检测到昏迷的信号和从未被观察到的现象。
translated by 谷歌翻译
监视自动实时流处理系统的行为已成为现实世界应用中最相关的问题之一。这种系统的复杂性已在很大程度上依赖于高维输入数据和数据饥饿的机器学习(ML)算法。我们提出了一个灵活的系统,功能监视(FM),该系统在此类数据集中检测数据漂移,并具有较小且恒定的内存足迹和流应用程序中的小计算成本。该方法基于多变量统计测试,并且是由设计驱动的数据(从数据中估算了完整的参考分布)。它监视系统使用的所有功能,同时每当发生警报时提供可解释的功能排名(以帮助根本原因分析)。系统的计算和记忆轻度是由于使用指数移动直方图而导致的。在我们的实验研究中,我们用其参数分析了系统的行为,更重要的是显示了它检测到与单个特征无直接相关的问题的示例。这说明了FM如何消除添加自定义信号以检测特定类型问题的需求,并且监视功能可用空间通常足够。
translated by 谷歌翻译
生成网络正在LHC的快速事件生成中打开新的途径。我们展示了生成的流量网络如何达到运动分布的百分比精度,如何与鉴别器共同培训,以及该鉴别者如何提高生成。我们的联合培训依赖于两种网络的新耦合,这些网络不需要纳什均衡。然后,我们通过贝叶斯网络设置和通过条件数据增强来估计生成的不确定性,而鉴别者确保与培训数据相比没有系统不一致。
translated by 谷歌翻译
贝叶斯工作流程通常需要引入滋扰参数,但对于核心科学建模,需要访问边缘后部密度。在这项工作中,我们使用掩盖的自回归流量和内核密度估计器封装边缘后部,使我们能够计算边际kullback-leibler脱离器和边缘贝叶斯模型尺寸,此外还可以生成样品和计算边际对数概率。我们将其应用于暗能量调查的局部宇宙学示例和全局21cm信号实验。除了计算边缘贝叶斯统计数据外,这项工作对于在贝叶斯实验设计,复杂的先验建模和似然仿真中进一步应用也很重要。该技术可在PIP可容纳的代码人造黄油中公开获得。
translated by 谷歌翻译
无监督的离散化是许多知识发现任务中的关键步骤。使用最小描述长度(MDL)原理局部自适应直方图的一维数据的最先进方法,但研究多维情况的研究要少得多:当前方法一次考虑一个尺寸(如果不是独立的),这导致基于自适应大小的矩形细胞的离散化。不幸的是,这种方法无法充分表征维度之间的依赖性和/或结果,包括由更多的单元(或垃圾箱)组成的离散化。为了解决这个问题,我们提出了一个表达模型类,该类别允许对二维数据进行更灵活的分区。我们扩展了一维情况的艺术状态,以基于归一化最大似然的形式获得模型选择问题。由于我们的模型类的灵活性是以巨大的搜索空间为代价的,因此我们引入了一种名为Palm的启发式算法,该算法将每个维度交替划分,然后使用MDL原理合并相邻区域。合成数据的实验表明,棕榈1)准确地揭示了模型类(即搜索空间)内的地面真相分区,给定的样本量足够大; 2)近似模型类外的各种分区; 3)收敛,与最先进的多元离散方法IPD相比。最后,我们将算法应用于三个空间数据集,我们证明,与内核密度估计(KDE)相比,我们的算法不仅揭示了更详细的密度变化,而且还可以更好地拟合看不见的数据,如日志流利性。
translated by 谷歌翻译
从间接检测实验中寻找暗物质湮灭的间接检测实验的解释需要计算昂贵的宇宙射线传播模拟。在这项工作中,我们提出了一种基于经常性神经网络的新方法,可显着加速二次和暗物质银宇射线反滴角的模拟,同时实现优异的准确性。这种方法允许在宇宙射线传播模型的滋扰参数上进行高效的分析或边缘化,以便为各种暗物质模型进行参数扫描。我们确定重要的采样,具体适用于确保仅在训练有素的参数区域中评估网络。我们使用最新AMS-02 Antiproton数据在几种模型的弱相互作用的大规模粒子上呈现导出的限制。与传统方法相比,全训练网络与此工作一起作为Darkraynet释放,并通过至少两个数量级来实现运行时的加速。
translated by 谷歌翻译
引力波(GW)检测现在是普遍的,并且随着GW探测器的全球网络的灵敏度,我们将观察每年瞬态GW事件的$ \ MATHCAL {O}(100)美元。用于估计其源参数的目前的方法采用最佳敏感但是计算昂贵的贝叶斯推理方法,其中典型的分析在6小时和5天之间取。对于二元中子星和中子星黑洞系统提示,预计在1秒 - 1分钟的时间尺度和用于提醒EM随访观察员的最快方法,可以提供估计在$ \ mathcal {o }(1)$分钟,在有限的关键源参数范围内。在这里,我们表明,在二进制黑洞信号上预先培训的条件变形Autiachoder可以返回贝叶斯后概率估计。仅针对给定的先前参数空间执行一次训练程序,然后可以将所得培训的机器能够生成描述后部分配$ \ SIM 6 $幅度的样本比现有技术更快。
translated by 谷歌翻译