The unfolding of detector effects is crucial for the comparison of data to theory predictions. While traditional methods are limited to representing the data in a low number of dimensions, machine learning has enabled new unfolding techniques while retaining the full dimensionality. Generative networks like invertible neural networks~(INN) enable a probabilistic unfolding, which map individual events to their corresponding unfolded probability distribution. The accuracy of such methods is however limited by how well simulated training samples model the actual data that is unfolded. We introduce the iterative conditional INN~(IcINN) for unfolding that adjusts for deviations between simulated training samples and data. The IcINN unfolding is first validated on toy data and then applied to pseudo-data for the $pp \to Z \gamma \gamma$ process.
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
生成网络正在LHC的快速事件生成中打开新的途径。我们展示了生成的流量网络如何达到运动分布的百分比精度,如何与鉴别器共同培训,以及该鉴别者如何提高生成。我们的联合培训依赖于两种网络的新耦合,这些网络不需要纳什均衡。然后,我们通过贝叶斯网络设置和通过条件数据增强来估计生成的不确定性,而鉴别者确保与培训数据相比没有系统不一致。
translated by 谷歌翻译
机器学习提供了一个令人兴奋的机会,可以改善高能物理探测器中几乎所有重建对象的校准。但是,机器学习方法通常取决于训练过程中使用的示例的光谱,这是一个称为先前依赖性的问题。这是校准的不良属性,需要适用于各种环境。本文的目的是明确强调某些基于机器学习的校准策略的先前依赖性。我们展示了基于仿真和基于数据的校准的最新建议如何继承用于培训的样本的属性,这可能会导致下游分析的偏见。在基于仿真的校准的情况下,我们认为我们最近提出的高斯ANSATZ方法可以避免先前依赖性的某些陷阱,而先前独立的基于数据的基于数据仍然是一个开放的问题。
translated by 谷歌翻译
数据和标签的联合分布的KL差异目标允许在随机变异推断的一个保护伞下统一监督的学习和变异自动编码器(VAE)。统一激发了扩展的监督方案,该方案允许计算神经网络模型的合适性P值。通过神经网络摊销的条件归一化流在这种结构中至关重要。我们讨论了它们如何允许在产品空间上共同定义的后代定义的覆盖范围,例如$ \ mathbb {r}^n \ times \ times \ mathcal {s}^m $,它包含在方向上的海报。最后,系统的不确定性自然包含在变化观点中。在经典的可能性方法或其他机器学习模型中,(1)系统,(2)覆盖范围和(3)拟合优度的成分通常并非全部可用,或者至少有一个受到严格限制。相比之下,拟议的扩展监督培训和摊销标准化流量可容纳所有三个,用于在产品空间上定义的任意统计分布的变异推理,例如$ \ mathbb {r}^n \ times \ times \ ldots \ ldots \ times \ times \ mathcal {s}^m {s}^m $,没有基本数据复杂性的基本障碍。因此,它具有当代(Astro-)粒子物理学家的统计工具箱的巨大潜力。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
结邦化是一种非扰动过程,无法从第一原理推导出理论描述。建模强子地层,需要几种假设和各种现象学方法。利用最先进的计算机视觉和深度学习算法,最终可以训练神经网络以学习物理过程的非线性和非扰动特征。在本研究中,通过调查全局和运动量,确实喷射和事件形状变量来呈现两个Reset网络的结果。广泛使用的焊串碎片模型应用于$ \ sqrt {s} = 7 $ tev proton-proton碰撞中的基线,以预测进一步的LHC能量的最相关的可观察者。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
我们在蒙特卡洛事件生成的生成对抗学习的背景下提出和评估一种替代量子发生器体系结构,用于模拟大型强子碰撞器(LHC)的粒子物理过程。我们通过在已知基础分布生成的人造数据上实施量子网络来验证这种方法。然后将网络应用于特定LHC散射过程的蒙特卡洛生成的数据集。新的量子生成器体系结构导致对最先进的实现的概括,即使使用浅深度网络,也可以达到较小的Kullback-Leibler分歧。此外,即使经过小型培训样本组进行了训练,量子发生器即使训练了培训,也成功地学习了基础分布功能。这对于数据增强应用程序特别有趣。我们将这种新颖的方法部署在两个不同的量子硬件体系结构,即被困的离子和超导技术上,以测试其无关紧要的可行性。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
机器学习中的半监管可用于搜索信号加背景区域未标记的新物理学。这强烈降低了搜索标准模型的信号的模型依赖性。这种方法显示了过度拟合可以产生假信号的缺点。折腾玩具蒙特卡罗(MC)事件可用于通过频繁推断估计相应的试验因子。但是,基于完全检测器模拟的MC事件是资源密集型的。生成的对抗网络(GANS)可用于模拟MC发生器。 GANS是强大的生成模型,但经常遭受培训不稳定。今后我们展示了对GAN的审查。我们倡导使用Wassersein Gan(Wan)的重量剪裁和渐变刑罚(Wan-GP),批评评论者的渐变率是对其投入的惩罚。在多Lepton异常的出现之后,我们在LHC的$ B $ -Quark结合时使用GANS为Di-Leptons最终状态。找到MC和Wgan-GP生成的事件之间的良好一致性,用于研究中选择的可观察结果。
translated by 谷歌翻译
估计不确定性是进行HEP中科学测量的核心:如果没有估计其不确定性,测量是无用的。不确定性量化(UQ)的目的是与这个问题密不可分的:“我们如何在身体和统计上解释这些不确定性?”这个问题的答案不仅取决于我们要执行的计算任务,还取决于我们用于该任务的方法。对于HEP中的人工智能(AI)应用,在几个领域中,可解释的UQ方法至关重要,包括推理,仿真和控制/决策。这些领域中的每个领域都有一些方法,但尚未被证明像当前在物理学中使用的更传统的方法一样值得信赖(例如,非AI经常主义者和贝叶斯方法)。阐明上面的问题需要更多地了解AI系统的相互作用和不确定性量化。我们简要讨论每个领域的现有方法,并将其与HEP跨越的任务联系起来。然后,我们讨论了途径的建议,以开发必要的技术,以在接下来的十年中可靠地使用AI与UQ使用。
translated by 谷歌翻译
从间接检测实验中寻找暗物质湮灭的间接检测实验的解释需要计算昂贵的宇宙射线传播模拟。在这项工作中,我们提出了一种基于经常性神经网络的新方法,可显着加速二次和暗物质银宇射线反滴角的模拟,同时实现优异的准确性。这种方法允许在宇宙射线传播模型的滋扰参数上进行高效的分析或边缘化,以便为各种暗物质模型进行参数扫描。我们确定重要的采样,具体适用于确保仅在训练有素的参数区域中评估网络。我们使用最新AMS-02 Antiproton数据在几种模型的弱相互作用的大规模粒子上呈现导出的限制。与传统方法相比,全训练网络与此工作一起作为Darkraynet释放,并通过至少两个数量级来实现运行时的加速。
translated by 谷歌翻译
Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty, hindering their real-world deployment. This paper develops a method, termed as the linearised deep image prior (DIP), to estimate the uncertainty associated with reconstructions produced by the DIP with total variation regularisation (TV). Specifically, we endow the DIP with conjugate Gaussian-linear model type error-bars computed from a local linearisation of the neural network around its optimised parameters. To preserve conjugacy, we approximate the TV regulariser with a Gaussian surrogate. This approach provides pixel-wise uncertainty estimates and a marginal likelihood objective for hyperparameter optimisation. We demonstrate the method on synthetic data and real-measured high-resolution 2D $\mu$CT data, and show that it provides superior calibration of uncertainty estimates relative to previous probabilistic formulations of the DIP. Our code is available at https://github.com/educating-dip/bayes_dip.
translated by 谷歌翻译
我们使用神经网络研究几种简化的暗物质(DM)模型及其在LHC的签名。我们专注于通常的单声角加上缺失的横向能量通道,但要训练算法我们在2D直方图中组织数据而不是逐个事件阵列。这导致较大的性能提升,以区分标准模型(SM)和SM以及新物理信号。我们使用KineMatic单速仪功能作为输入数据,允许我们描述具有单个数据示例的模型的系列。我们发现神经网络性能不依赖于模拟的后台事件数量,如果它们作为$ s / \ sqrt {b} $函数呈现,其中$ s $和$ b $是信号和背景的数量每直方图的事件分别。这提供了对方法的灵活性,因为在这种情况下测试特定模型只需要了解新物理单次横截面。此外,我们还在关于真实DM性质的错误假设下讨论网络性能。最后,我们提出了多模型分类器以更普遍的方式搜索和识别新信号,对于下一个LHC运行。
translated by 谷歌翻译
我们研究了通过机器学习从欧几里得相关函数重建光谱函数的逆问题。我们提出了一个新型的神经网络SVAE,该网络基于变异自动编码器(VAE),可以自然应用于逆问题。 SVAE的突出特征是,作为损失函数中的先验信息包含了频谱函数的地面真实值的香农 - jaynes熵项,要最小化。我们使用高斯混合模型产生的一般光谱函数训练网络。作为一项测试,我们使用由一个由一个共振峰制成的四种不同类型的物理动机函数产生的相关器,连续项和使用非相关性QCD获得的扰动光谱函数。从模拟数据测试我们发现,在大多数情况下,SVAE与重建光谱函数质量的最大熵方法(MEM)相媲美,甚至在光谱函数具有尖峰的情况下且数据数量不足的情况下,SVAE与MEM的表现相当。相关器中的点。通过在淬火晶格QCD中获得的charmonium的时间相关函数应用于$ 128^3 \ times96 $ lattices和$ 128^3 \ times48 $ lattices,我们找到了$ 128^3 \ times96 $ lattices in 0.75 $ t_c $ on 0.75 $ t_c $ on 0.75 $ t_c $,我们发现,我们找到了,我们找到了,我们找到从SVAE和MEM提取的$ \ eta_c $的共振峰值对晶格模拟中采用的时间方向($ n_ \ tau $)的点数具有很大的依赖为了解决$ \ eta_c $的命运为1.5 $ t_c $。
translated by 谷歌翻译
在背景主导的情况下,通过机器学习和信号和背景之间的可观察者之间的高度重叠来调查LHC在LHC的新物理搜索的敏感性。我们使用两种不同的型号,XGBoost和深度神经网络,利用可观察到之间的相关性,并将这种方法与传统的切割方法进行比较。我们认为不同的方法来分析模型的输出,发现模板拟合通常比简单的切割更好地执行。通过福芙氏分解,我们可以额外了解事件运动学与机器学习模型输出之间的关系。我们认为具有亚霉素的超对称场景作为一个具体示例,但方法可以应用于更广泛的超对称模型。
translated by 谷歌翻译
引力波(GW)检测现在是普遍的,并且随着GW探测器的全球网络的灵敏度,我们将观察每年瞬态GW事件的$ \ MATHCAL {O}(100)美元。用于估计其源参数的目前的方法采用最佳敏感但是计算昂贵的贝叶斯推理方法,其中典型的分析在6小时和5天之间取。对于二元中子星和中子星黑洞系统提示,预计在1秒 - 1分钟的时间尺度和用于提醒EM随访观察员的最快方法,可以提供估计在$ \ mathcal {o }(1)$分钟,在有限的关键源参数范围内。在这里,我们表明,在二进制黑洞信号上预先培训的条件变形Autiachoder可以返回贝叶斯后概率估计。仅针对给定的先前参数空间执行一次训练程序,然后可以将所得培训的机器能够生成描述后部分配$ \ SIM 6 $幅度的样本比现有技术更快。
translated by 谷歌翻译
我们开发了一种多尺度方法,以从实验或模拟中观察到的物理字段或配置的数据集估算高维概率分布。通过这种方式,我们可以估计能量功能(或哈密顿量),并有效地在从统计物理学到宇宙学的各个领域中生成多体系统的新样本。我们的方法 - 小波条件重新归一化组(WC-RG) - 按比例进行估算,以估算由粗粒磁场来调节的“快速自由度”的条件概率的模型。这些概率分布是由与比例相互作用相关的能量函数建模的,并以正交小波为基础表示。 WC-RG将微观能量函数分解为各个尺度上的相互作用能量之和,并可以通过从粗尺度到细度来有效地生成新样品。近相变,它避免了直接估计和采样算法的“临界减速”。理论上通过结合RG和小波理论的结果来解释这一点,并为高斯和$ \ varphi^4 $字段理论进行数值验证。我们表明,多尺度WC-RG基于能量的模型比局部电位模型更通用,并且可以在所有长度尺度上捕获复杂的多体相互作用系统的物理。这是针对反映宇宙学中暗物质分布的弱透镜镜头的,其中包括与长尾概率分布的长距离相互作用。 WC-RG在非平衡系统中具有大量的潜在应用,其中未知基础分布{\ it先验}。最后,我们讨论了WC-RG和深层网络体系结构之间的联系。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译