As the class size grows, maintaining a balanced dataset across many classes is challenging because the data are long-tailed in nature; it is even impossible when the sample-of-interest co-exists with each other in one collectable unit, e.g., multiple visual instances in one image. Therefore, long-tailed classification is the key to deep learning at scale. However, existing methods are mainly based on reweighting/re-sampling heuristics that lack a fundamental theory. In this paper, we establish a causal inference framework, which not only unravels the whys of previous methods, but also derives a new principled solution. Specifically, our theory shows that the SGD momentum is essentially a confounder in long-tailed classification. On one hand, it has a harmful causal effect that misleads the tail prediction biased towards the head. On the other hand, its induced mediation also benefits the representation learning and head prediction. Our framework elegantly disentangles the paradoxical effects of the momentum, by pursuing the direct causal effect caused by an input sample. In particular, we use causal intervention in training, and counterfactual reasoning in inference, to remove the "bad" while keep the "good". We achieve new state-of-the-arts on three long-tailed visual recognition benchmarks 1 : Long-tailed CIFAR-10/-100, ImageNet-LT for image classification and LVIS for instance segmentation.
translated by 谷歌翻译
Object recognition techniques using convolutional neural networks (CNN) have achieved great success. However, state-of-the-art object detection methods still perform poorly on large vocabulary and long-tailed datasets, e.g. LVIS.In this work, we analyze this problem from a novel perspective: each positive sample of one category can be seen as a negative sample for other categories, making the tail categories receive more discouraging gradients. Based on it, we propose a simple but effective loss, named equalization loss, to tackle the problem of long-tailed rare categories by simply ignoring those gradients for rare categories. The equalization loss protects the learning of rare categories from being at a disadvantage during the network parameter updating. Thus the model is capable of learning better discriminative features for objects of rare classes. Without any bells and whistles, our method achieves AP gains of 4.1% and 4.8% for the rare and common categories on the challenging LVIS benchmark, compared to the Mask R-CNN baseline. With the utilization of the effective equalization loss, we finally won the 1st place in the LVIS Challenge 2019. Code has been made available at: https: //github.com/tztztztztz/eql.detectron2
translated by 谷歌翻译
长尾分布是现实世界中的常见现象。提取的大规模图像数据集不可避免地证明了长尾巴的属性和经过不平衡数据训练的模型可以为代表性过多的类别获得高性能,但为代表性不足的类别而苦苦挣扎,导致偏见的预测和绩效降低。为了应对这一挑战,我们提出了一种名为“逆图像频率”(IIF)的新型偏差方法。 IIF是卷积神经网络分类层中逻辑的乘法边缘调整转换。我们的方法比类似的作品实现了更强的性能,并且对于下游任务(例如长尾实例分割)特别有用,因为它会产生较少的假阳性检测。我们的广泛实验表明,IIF在许多长尾基准的基准(例如Imagenet-lt,cifar-lt,ploce-lt和lvis)上超过了最先进的现状,在Imagenet-lt上,Resnet50和26.2%达到了55.8%的TOP-1准确性LVIS上使用MaskRCNN分割AP。代码可在https://github.com/kostas1515/iif中找到
translated by 谷歌翻译
我们在现有的长尾分类方法中解决了被忽视的无偏见:我们发现它们的整体改善主要归因于尾部过度的偏置偏好,因为假设测试分配是平衡的;但是,当测试与长尾训练数据一样不平衡 - 让测试尊重ZIPF的自然定律 - 尾巴偏差不再有益,因为它伤害了大多数人。在本文中,我们提出了跨域经验风险最小化(XIM)来训练一个非偏见模型,以实现对两个测试分布的强大性能,经验证明Xerm通过学习更好的特征表示而不是头部与头部来改善分类。游戏。基于因果关系,我们进一步理论上解释了Xerm实现了非偏见的原因:通过调整不平衡域和平衡但不合形的结构域的经验风险来消除由域选择引起的偏差。代码可在https://github.com/beierzhu/xerm获得。
translated by 谷歌翻译
长尾学习旨在应对在现实情况下严重的阶级失衡下统治训练程序的关键挑战。但是,很少有人注意如何量化表示空间中头等的优势严重性。在此激励的情况下,我们将基于余弦的分类器推广到von mises-fisher(VMF)混合模型,该模型被称为VMF分类器,该模型可以通过计算分布重叠系数来定量地测量超晶体空间上的表示质量。据我们所知,这是从分布重叠系数的角度来衡量分类器和特征的表示质量的第一项工作。最重要的是,我们制定了类间差异和类功能的一致性损失项,以减轻分类器的重量之间的干扰,并与分类器的权重相结合。此外,一种新型的训练后校准算法设计为零成本通过类间重叠系数来提高性能。我们的方法的表现优于先前的工作,并具有很大的利润,并在长尾图像分类,语义细分和实例分段任务上实现了最先进的性能(例如,我们在Imagenet-50中实现了55.0 \%的总体准确性LT)。我们的代码可在https://github.com/vipailab/vmf \_op上找到。
translated by 谷歌翻译
与其他类别(称为少数族裔或尾巴类)相比,很少的类或类别(称为多数或头等类别的类别)具有更高的数据样本数量,在现实世界中,长尾数据集经常遇到。在此类数据集上培训深层神经网络会给质量级别带来偏见。到目前为止,研究人员提出了多种加权损失和数据重新采样技术,以减少偏见。但是,大多数此类技术都认为,尾巴类始终是最难学习的类,因此需要更多的重量或注意力。在这里,我们认为该假设可能并不总是成立的。因此,我们提出了一种新颖的方法,可以在模型的训练阶段动态测量每个类别的瞬时难度。此外,我们使用每个班级的难度度量来设计一种新型的加权损失技术,称为“基于阶级难度的加权(CDB-W)损失”和一种新型的数据采样技术,称为“基于类别难度的采样)(CDB-S )'。为了验证CDB方法的广泛可用性,我们对多个任务进行了广泛的实验,例如图像分类,对象检测,实例分割和视频操作分类。结果验证了CDB-W损失和CDB-S可以在许多类似于现实世界中用例的类别不平衡数据集(例如Imagenet-LT,LVIS和EGTEA)上实现最先进的结果。
translated by 谷歌翻译
现有的长尾分类(LT)方法仅着眼于解决阶级的失衡,即头部类别的样本多于尾巴类,但忽略了属性的不平衡。实际上,即使班级平衡,由于各种属性,每个类中的样本仍然可能会长时间尾。请注意,后者在根本上比前者更加普遍和具有挑战性,因为属性不仅是大多数数据集的隐含,而且在组合上也具有复杂性,因此平衡的昂贵。因此,我们引入了一个新的研究问题:广义的长尾分类(GLT),共同考虑两种失衡。通过“广义”,我们的意思是,GLT方法自然应该解决传统的LT,但反之亦然。毫不奇怪,我们发现大多数class LT方法在我们提出的两个基准中退化:Imagenet-GLT和Mscoco-GLT。我们认为这是因为他们过分强调了班级分布的调整,同时忽略了学习属性不变的功能。为此,我们提出了一种不变特征学习(IFL)方法,作为GLT的第一个强基线。 IFL首先从不完美的预测中发现具有不同类内分布的环境,然后在其中学习不变的功能。有希望的是,作为改进的功能主链,IFL提高了所有LT阵容:一个/两阶段的重新平衡,增强和合奏。代码和基准可在GitHub上获得:https://github.com/kaihuatang/generalized-long-tailed-benchmarks.pytorch
translated by 谷歌翻译
最近在对象检测和细分领域取得了重大进步。但是,当涉及到罕见类别时,最新方法无法检测到它们,从而在稀有类别和频繁类别之间存在显着的性能差距。在本文中,我们确定深探测器中使用的Sigmoid或SoftMax函数是低性能的主要原因,并且是长尾检测和分割的最佳选择。为了解决这个问题,我们开发了牙龈优化的损失(GOL),以进行长尾检测和分割。考虑到大多数长尾检测中的大多数类的预期概率较低,它与数据集中罕见类别的牙胶分布保持一致。拟议的GOL在AP上显着优于最佳最新方法的最佳方法,并将整体分割率提高9.0%,并将检测到8.0%,尤其是将稀有类别的检测提高了20.3%,与Mask-Rcnn相比提高了20.3%。 ,在LVIS数据集上。代码可用:https://github.com/kostas1515/gol
translated by 谷歌翻译
The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g. by loss re-weighting, data re-sampling, or transfer learning from head-to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification. Our code is available at https://github.com/facebookresearch/classifier-balancing.
translated by 谷歌翻译
Vanilla用于物体检测和实例分割的模型遭受重偏向朝着长尾设置中的频繁对象进行偏向。现有方法主要在培训期间解决此问题,例如,通过重新采样或重新加权。在本文中,我们调查了一个很大程度上被忽视的方法 - 置信分数的后处理校准。我们提出NORCAL,用于长尾对象检测和实例分割的归一化校准校准,简单而简单的配方,通过其训练样本大小重新恢复每个阶级的预测得分。我们展示了单独处理背景类并使每个提案的课程分数标准化是实现卓越性能的键。在LVIS DataSet上,Norcal不仅可以在罕见的课程上有效地改善所有基线模型,也可以在普通和频繁的阶级上改进。最后,我们进行了广泛的分析和消融研究,以了解我们方法的各种建模选择和机制的见解。我们的代码在https://github.com/tydpan/norcal/上公开提供。
translated by 谷歌翻译
视觉识别任务中的长尾类分布对于如何处理头部和尾部类之间的偏置预测,即,模型倾向于将尾部类作为头部类进行分类。虽然现有的研究专注于数据重采采样和损失函数工程,但在本文中,我们采取了不同的视角:分类利润率。我们研究边距和注册之间的关系(分类得分)并经验遵守偏置边缘,并且偏置的Logits是正相关的。我们提出MARC,一个简单但有效的边缘校准函数,用于动态校准偏置边缘的偏置利润。我们通过对普通的长尾基准测试进行了广泛的实验,包括CIFAR-LT,Imagenet-LT,LT,以及不适物 - LT的广泛实验。实验结果表明,我们的MARC在这些基准上实现了有利的结果。此外,Marc只需三行代码即可实现。我们希望这种简单的方法能够激励人们重新思考偏置的边距和偏见的长尾视觉识别标识。
translated by 谷歌翻译
由于课程中的训练样本极端不平衡,长尾实例分割是一个具有挑战性的任务。它导致头部课程的严重偏差(含有多数样本)对尾尾。这呈现“如何适当地定义和缓解偏见”最重要的问题之一。先前作品主要使用标签分布或平均分数信息来表示粗粒偏置。在本文中,我们探索挖掘困难的矩阵,该矩阵携带细粒度的错误分类细节,以减轻成对偏置,概括粗液。为此,我们提出了一种新颖的成对类余额(PCB)方法,基于混淆矩阵,在训练期间更新以累积正在进行的预测偏好。 PCB在培训期间生成正规化的纠错软标签。此外,开发了一种迭代学习范例,以支持这种脱结的渐进和平稳的正则化。 PCB可以插入并播放任何现有方法作为补充。 LVIS的实验结果表明,我们的方法在没有钟声和口哨的情况下实现最先进的性能。各种架构的卓越结果表明了泛化能力。
translated by 谷歌翻译
尽管近期长尾对象检测成功,但几乎所有长尾对象探测器都是基于两级范式开发的。在实践中,一阶段探测器在行业中更为普遍,因为它们具有简单而快速的管道,易于部署。然而,在长尾情景中,到目前为止,这项工作尚未探讨。在本文中,我们调查了在这种情况下是否可以良好的单级探测器表现良好。我们发现预防一步检测器实现优异性能的主要障碍是:在长尾数据分布下,类别遭受不同程度的正负不平衡问题。传统的焦点损失与所有类别的调制因子相同的调节因子平衡,因此未能处理长尾问题。为了解决这个问题,我们提出了根据其不平衡程度独立地重新平衡不同类别的正面和负样本的损失贡献的均等的联络损失(EFL)。具体而言,EFL采用类别相关调制因子,可以通过不同类别的培训状态来动态调整。对挑战性的LVIS V1基准进行的广泛实验表明了我们提出的方法的有效性。通过端到端培训管道,EF​​L在整体AP方面实现了29.2%,并对稀有类别进行了显着的性能改进,超越了所有现有的最先进的方法。代码可在https://github.com/modeltc/eod上获得。
translated by 谷歌翻译
常规的去命名方法依赖于所有样品都是独立且分布相同的假设,因此最终的分类器虽然受到噪声的干扰,但仍然可以轻松地将噪声识别为训练分布的异常值。但是,在不可避免地长尾巴的大规模数据中,该假设是不现实的。这种不平衡的训练数据使分类器对尾巴类别的歧视性较小,而尾巴类别的差异化现在变成了“硬”的噪声 - 它们几乎与干净的尾巴样品一样离群值。我们将这一新挑战介绍为嘈杂的长尾分类(NLT)。毫不奇怪,我们发现大多数拖延方法无法识别出硬噪声,从而导致三个提出的NLT基准测试的性能大幅下降:Imagenet-NLT,Animal10-NLT和Food101-NLT。为此,我们设计了一个迭代嘈杂的学习框架,称为“难以容易”(H2E)。我们的引导理念是首先学习一个分类器作为噪声标识符不变的类和上下文分布变化,从而将“硬”噪声减少到“ Easy”的噪声,其删除进一步改善了不变性。实验结果表明,我们的H2E胜过最先进的方法及其在长尾设置上的消融,同时在传统平衡设置上保持稳定的性能。数据集和代码可从https://github.com/yxymessi/h2e-framework获得
translated by 谷歌翻译
现实世界数据通常存在长尾分布。对不平衡数据的培训倾向于呈现神经网络在头部上表现良好,而尾部课程则更加差。尾班的培训实例的严重稀疏性是主要挑战,这导致培训期间的偏见分配估计。丰富的努力已经致力于改善挑战,包括数据重新采样和综合尾班的新培训实例。然而,没有先前的研究已经利用了从头课程转移到尾班的可转让知识,以校准尾舱的分布。在本文中,我们假设可以通过类似的头部级别来丰富尾部类,并提出一种名为标签感知分布校准Ladc的新型分布校准方法。 Ladc从相关的头部课程转移统计数据以推断尾部课程的分布。从校准分布的采样进一步促进重新平衡分类器。图像和文本的实验和文本长尾数据集表明,LADC显着优于现有方法。可视化还显示LADC提供更准确的分布估计。
translated by 谷歌翻译
长尾数据集(Head Class)组成的培训样本比尾巴类别多得多,这会导致识别模型对头等舱有偏见。加权损失是缓解此问题的最受欢迎的方法之一,最近的一项工作表明,班级难度可能比常规使用的类频率更好地决定了权重的分布。在先前的工作中使用了一种启发式公式来量化难度,但是我们从经验上发现,最佳公式取决于数据集的特征。因此,我们提出了困难网络,该难题学习在元学习框架中使用模型的性能来预测类的难度。为了使其在其他班级的背景下学习班级的合理难度,我们新介绍了两个关键概念,即相对难度和驾驶员损失。前者有助于困难网络在计算班级难度时考虑其他课程,而后者对于将学习指向有意义的方向是必不可少的。对流行的长尾数据集进行了广泛的实验证明了该方法的有效性,并且在多个长尾数据集上实现了最先进的性能。
translated by 谷歌翻译
由于癌症样品收集和注释的难度,宫颈癌数据集通常表现出长尾数据分布。当训练检测器以检测WSI(整个切片图像)中的癌细胞时,从TCT(ThinPrep细胞学测试)样品捕获的样品时,头部类别(例如正常细胞和炎性细胞)通常比尾巴类别数量更大。 (例如癌细胞)。对象检测中的大多数现有最新的长尾学习方法将重点放在类别分布统计上,以解决长尾方案中的问题,而无需考虑每个样本的“硬度”。为了解决这个问题,在这项工作中,我们提出了一个Grad-libra损失,该损失利用梯度动态校准每个样品的硬度程度,以使不同类别的硬度度重新平衡正面和负样品的梯度。因此,我们的损失可以帮助探测器更加重视头部和尾部类别中的这些硬样品。在长尾的TCT WSI图像数据集上进行了广泛的实验表明,主流检测器,例如对使用我们建议的梯度损失训练的训练,重新点,FCO,ATSS,YOLOF等的地图比使用跨透明分类损失训练的地图要高得多(7.8%)。
translated by 谷歌翻译
类别不平衡数据的问题在于,由于少数类别的数据缺乏数据,分类器的泛化性能劣化。在本文中,我们提出了一种新的少数民族过度采样方法,通过利用大多数类作为背景图像的丰富背景来增加多元化的少数民族样本。为了使少数民族样本多样化,我们的主要思想是将前景补丁从少数级别粘贴到来自具有富裕环境的多数类的背景图像。我们的方法很简单,可以轻松地与现有的长尾识别方法结合。我们通过广泛的实验和消融研究证明了提出的过采样方法的有效性。如果没有任何架构更改或复杂的算法,我们的方法在各种长尾分类基准上实现了最先进的性能。我们的代码将在链接上公开提供。
translated by 谷歌翻译
Deep neural networks still struggle on long-tailed image datasets, and one of the reasons is that the imbalance of training data across categories leads to the imbalance of trained model parameters. Motivated by the empirical findings that trained classifiers yield larger weight norms in head classes, we propose to reformulate the recognition probabilities through included angles without re-balancing the classifier weights. Specifically, we calculate the angles between the data feature and the class-wise classifier weights to obtain angle-based prediction results. Inspired by the performance improvement of the predictive form reformulation and the outstanding performance of the widely used two-stage learning framework, we explore the different properties of this angular prediction and propose novel modules to improve the performance of different components in the framework. Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT. Source code will be made publicly available.
translated by 谷歌翻译
Today's scene graph generation (SGG) task is still far from practical, mainly due to the severe training bias, e.g., collapsing diverse human walk on/ sit on/lay on beach into human on beach. Given such SGG, the down-stream tasks such as VQA can hardly infer better scene structures than merely a bag of objects. However, debiasing in SGG is not trivial because traditional debiasing methods cannot distinguish between the good and bad bias, e.g., good context prior (e.g., person read book rather than eat) and bad long-tailed bias (e.g., near dominating behind/in front of). In this paper, we present a novel SGG framework based on causal inference but not the conventional likelihood. We first build a causal graph for SGG, and perform traditional biased training with the graph. Then, we propose to draw the counterfactual causality from the trained graph to infer the effect from the bad bias, which should be removed. In particular, we use Total Direct Effect as the proposed final predicate score for unbiased SGG. Note that our framework is agnostic to any SGG model and thus can be widely applied in the community who seeks unbiased predictions. By using the proposed Scene Graph Diagnosis toolkit 1 on the SGG benchmark Visual Genome and several prevailing models, we observed significant improvements over the previous state-of-the-art methods.
translated by 谷歌翻译