Object recognition techniques using convolutional neural networks (CNN) have achieved great success. However, state-of-the-art object detection methods still perform poorly on large vocabulary and long-tailed datasets, e.g. LVIS.In this work, we analyze this problem from a novel perspective: each positive sample of one category can be seen as a negative sample for other categories, making the tail categories receive more discouraging gradients. Based on it, we propose a simple but effective loss, named equalization loss, to tackle the problem of long-tailed rare categories by simply ignoring those gradients for rare categories. The equalization loss protects the learning of rare categories from being at a disadvantage during the network parameter updating. Thus the model is capable of learning better discriminative features for objects of rare classes. Without any bells and whistles, our method achieves AP gains of 4.1% and 4.8% for the rare and common categories on the challenging LVIS benchmark, compared to the Mask R-CNN baseline. With the utilization of the effective equalization loss, we finally won the 1st place in the LVIS Challenge 2019. Code has been made available at: https: //github.com/tztztztztz/eql.detectron2
translated by 谷歌翻译
尽管近期长尾对象检测成功,但几乎所有长尾对象探测器都是基于两级范式开发的。在实践中,一阶段探测器在行业中更为普遍,因为它们具有简单而快速的管道,易于部署。然而,在长尾情景中,到目前为止,这项工作尚未探讨。在本文中,我们调查了在这种情况下是否可以良好的单级探测器表现良好。我们发现预防一步检测器实现优异性能的主要障碍是:在长尾数据分布下,类别遭受不同程度的正负不平衡问题。传统的焦点损失与所有类别的调制因子相同的调节因子平衡,因此未能处理长尾问题。为了解决这个问题,我们提出了根据其不平衡程度独立地重新平衡不同类别的正面和负样本的损失贡献的均等的联络损失(EFL)。具体而言,EFL采用类别相关调制因子,可以通过不同类别的培训状态来动态调整。对挑战性的LVIS V1基准进行的广泛实验表明了我们提出的方法的有效性。通过端到端培训管道,EF​​L在整体AP方面实现了29.2%,并对稀有类别进行了显着的性能改进,超越了所有现有的最先进的方法。代码可在https://github.com/modeltc/eod上获得。
translated by 谷歌翻译
最近在对象检测和细分领域取得了重大进步。但是,当涉及到罕见类别时,最新方法无法检测到它们,从而在稀有类别和频繁类别之间存在显着的性能差距。在本文中,我们确定深探测器中使用的Sigmoid或SoftMax函数是低性能的主要原因,并且是长尾检测和分割的最佳选择。为了解决这个问题,我们开发了牙龈优化的损失(GOL),以进行长尾检测和分割。考虑到大多数长尾检测中的大多数类的预期概率较低,它与数据集中罕见类别的牙胶分布保持一致。拟议的GOL在AP上显着优于最佳最新方法的最佳方法,并将整体分割率提高9.0%,并将检测到8.0%,尤其是将稀有类别的检测提高了20.3%,与Mask-Rcnn相比提高了20.3%。 ,在LVIS数据集上。代码可用:https://github.com/kostas1515/gol
translated by 谷歌翻译
长尾分布是现实世界中的常见现象。提取的大规模图像数据集不可避免地证明了长尾巴的属性和经过不平衡数据训练的模型可以为代表性过多的类别获得高性能,但为代表性不足的类别而苦苦挣扎,导致偏见的预测和绩效降低。为了应对这一挑战,我们提出了一种名为“逆图像频率”(IIF)的新型偏差方法。 IIF是卷积神经网络分类层中逻辑的乘法边缘调整转换。我们的方法比类似的作品实现了更强的性能,并且对于下游任务(例如长尾实例分割)特别有用,因为它会产生较少的假阳性检测。我们的广泛实验表明,IIF在许多长尾基准的基准(例如Imagenet-lt,cifar-lt,ploce-lt和lvis)上超过了最先进的现状,在Imagenet-lt上,Resnet50和26.2%达到了55.8%的TOP-1准确性LVIS上使用MaskRCNN分割AP。代码可在https://github.com/kostas1515/iif中找到
translated by 谷歌翻译
Vanilla用于物体检测和实例分割的模型遭受重偏向朝着长尾设置中的频繁对象进行偏向。现有方法主要在培训期间解决此问题,例如,通过重新采样或重新加权。在本文中,我们调查了一个很大程度上被忽视的方法 - 置信分数的后处理校准。我们提出NORCAL,用于长尾对象检测和实例分割的归一化校准校准,简单而简单的配方,通过其训练样本大小重新恢复每个阶级的预测得分。我们展示了单独处理背景类并使每个提案的课程分数标准化是实现卓越性能的键。在LVIS DataSet上,Norcal不仅可以在罕见的课程上有效地改善所有基线模型,也可以在普通和频繁的阶级上改进。最后,我们进行了广泛的分析和消融研究,以了解我们方法的各种建模选择和机制的见解。我们的代码在https://github.com/tydpan/norcal/上公开提供。
translated by 谷歌翻译
由于癌症样品收集和注释的难度,宫颈癌数据集通常表现出长尾数据分布。当训练检测器以检测WSI(整个切片图像)中的癌细胞时,从TCT(ThinPrep细胞学测试)样品捕获的样品时,头部类别(例如正常细胞和炎性细胞)通常比尾巴类别数量更大。 (例如癌细胞)。对象检测中的大多数现有最新的长尾学习方法将重点放在类别分布统计上,以解决长尾方案中的问题,而无需考虑每个样本的“硬度”。为了解决这个问题,在这项工作中,我们提出了一个Grad-libra损失,该损失利用梯度动态校准每个样品的硬度程度,以使不同类别的硬度度重新平衡正面和负样品的梯度。因此,我们的损失可以帮助探测器更加重视头部和尾部类别中的这些硬样品。在长尾的TCT WSI图像数据集上进行了广泛的实验表明,主流检测器,例如对使用我们建议的梯度损失训练的训练,重新点,FCO,ATSS,YOLOF等的地图比使用跨透明分类损失训练的地图要高得多(7.8%)。
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
与其他类别(称为少数族裔或尾巴类)相比,很少的类或类别(称为多数或头等类别的类别)具有更高的数据样本数量,在现实世界中,长尾数据集经常遇到。在此类数据集上培训深层神经网络会给质量级别带来偏见。到目前为止,研究人员提出了多种加权损失和数据重新采样技术,以减少偏见。但是,大多数此类技术都认为,尾巴类始终是最难学习的类,因此需要更多的重量或注意力。在这里,我们认为该假设可能并不总是成立的。因此,我们提出了一种新颖的方法,可以在模型的训练阶段动态测量每个类别的瞬时难度。此外,我们使用每个班级的难度度量来设计一种新型的加权损失技术,称为“基于阶级难度的加权(CDB-W)损失”和一种新型的数据采样技术,称为“基于类别难度的采样)(CDB-S )'。为了验证CDB方法的广泛可用性,我们对多个任务进行了广泛的实验,例如图像分类,对象检测,实例分割和视频操作分类。结果验证了CDB-W损失和CDB-S可以在许多类似于现实世界中用例的类别不平衡数据集(例如Imagenet-LT,LVIS和EGTEA)上实现最先进的结果。
translated by 谷歌翻译
As the class size grows, maintaining a balanced dataset across many classes is challenging because the data are long-tailed in nature; it is even impossible when the sample-of-interest co-exists with each other in one collectable unit, e.g., multiple visual instances in one image. Therefore, long-tailed classification is the key to deep learning at scale. However, existing methods are mainly based on reweighting/re-sampling heuristics that lack a fundamental theory. In this paper, we establish a causal inference framework, which not only unravels the whys of previous methods, but also derives a new principled solution. Specifically, our theory shows that the SGD momentum is essentially a confounder in long-tailed classification. On one hand, it has a harmful causal effect that misleads the tail prediction biased towards the head. On the other hand, its induced mediation also benefits the representation learning and head prediction. Our framework elegantly disentangles the paradoxical effects of the momentum, by pursuing the direct causal effect caused by an input sample. In particular, we use causal intervention in training, and counterfactual reasoning in inference, to remove the "bad" while keep the "good". We achieve new state-of-the-arts on three long-tailed visual recognition benchmarks 1 : Long-tailed CIFAR-10/-100, ImageNet-LT for image classification and LVIS for instance segmentation.
translated by 谷歌翻译
由于课程中的训练样本极端不平衡,长尾实例分割是一个具有挑战性的任务。它导致头部课程的严重偏差(含有多数样本)对尾尾。这呈现“如何适当地定义和缓解偏见”最重要的问题之一。先前作品主要使用标签分布或平均分数信息来表示粗粒偏置。在本文中,我们探索挖掘困难的矩阵,该矩阵携带细粒度的错误分类细节,以减轻成对偏置,概括粗液。为此,我们提出了一种新颖的成对类余额(PCB)方法,基于混淆矩阵,在训练期间更新以累积正在进行的预测偏好。 PCB在培训期间生成正规化的纠错软标签。此外,开发了一种迭代学习范例,以支持这种脱结的渐进和平稳的正则化。 PCB可以插入并播放任何现有方法作为补充。 LVIS的实验结果表明,我们的方法在没有钟声和口哨的情况下实现最先进的性能。各种架构的卓越结果表明了泛化能力。
translated by 谷歌翻译
In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing positive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the input hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives. The detectors are trained stage by stage, leveraging the observation that the output of a detector is a good distribution for training the next higher quality detector. The resampling of progressively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reducing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challenging COCO dataset. Experiments also show that the Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains independently of the baseline detector strength. The code will be made available at https://github.com/zhaoweicai/cascade-rcnn.
translated by 谷歌翻译
translated by 谷歌翻译
Progress on object detection is enabled by datasets that focus the research community's attention on open challenges. This process led us from simple images to complex scenes and from bounding boxes to segmentation masks. In this work, we introduce LVIS (pronounced 'el-vis'): a new dataset for Large Vocabulary Instance Segmentation. We plan to collect ∼2 million high-quality instance segmentation masks for over 1000 entry-level object categories in 164k images. Due to the Zipfian distribution of categories in natural images, LVIS naturally has a long tail of categories with few training samples. Given that state-of-the-art deep learning methods for object detection perform poorly in the low-sample regime, we believe that our dataset poses an important and exciting new scientific challenge. LVIS is available at http://www.lvisdataset.org.
translated by 谷歌翻译
通常在具有固定预定义类别的完全注销的培训数据上学习对象探测器。但是,通常需要逐步增加类别。通常,在这种情况下,只有用旧课程注释的原始培训集和一些带有新课程的新培训数据。基于有限的数据集,强烈需要一个可以处理所有类别的统一检测器。我们提出了一个实用计划,以实现这项工作。无冲突的损失旨在避免标签歧义,从而在一次训练中导致可接受的探测器。为了进一步提高性能,我们提出了一个重新培训阶段,其中采用蒙特卡洛辍学术来计算定位置信度,以挖掘更准确的边界框,并提出了一种重叠的加权方法,以更好地利用在重新训练期间更好地利用伪注释。广泛的实验证明了我们方法的有效性。
translated by 谷歌翻译
平均精度(AP)损失最近在密集的对象检测任务上显示出有希望的性能。但是,尚未开发出对AP损失如何影响检测器的深刻了解。在这项工作中,我们重新审视平均精度(AP)损失,并揭示了关键元素是选择排名对的关键元素基于该观察结果,我们提出了两种改善AP损失的策略。其中的第一个是一种新型的自适应成对误差(APE)损失,该损失集中在正面和负样本中的排名对。此外,我们通过使用聚类算法利用归一化排名得分和本地化得分来选择更准确的排名对。在MSCOCO数据集上进行的实验支持我们的分析,并证明了我们提出的方法的优越性与当前分类和排名损失相比。该代码可从https://github.com/xudangliatiger/ape-loss获得。
translated by 谷歌翻译
This report introduces the technical details of the team FuXi-Fresher for LVIS Challenge 2021. Our method focuses on the problem in following two aspects: the long-tail distribution and the segmentation quality of mask and boundary. Based on the advanced HTC instance segmentation algorithm, we connect transformer backbone(Swin-L) through composite connections inspired by CBNetv2 to enhance the baseline results. To alleviate the problem of long-tail distribution, we design a Distribution Balanced method which includes dataset balanced and loss function balaced modules. Further, we use a Mask and Boundary Refinement method composed with mask scoring and refine-mask algorithms to improve the segmentation quality. In addition, we are pleasantly surprised to find that early stopping combined with EMA method can achieve a great improvement. Finally, by using multi-scale testing and increasing the upper limit of the number of objects detected per image, we achieved more than 45.4% boundary AP on the val set of LVIS Challenge 2021. On the test data of LVIS Challenge 2021, we rank 1st and achieve 48.1% AP. Notably, our APr 47.5% is very closed to the APf 48.0%. * indicates equal contribution.
translated by 谷歌翻译
类别不平衡数据的问题在于,由于少数类别的数据缺乏数据,分类器的泛化性能劣化。在本文中,我们提出了一种新的少数民族过度采样方法,通过利用大多数类作为背景图像的丰富背景来增加多元化的少数民族样本。为了使少数民族样本多样化,我们的主要思想是将前景补丁从少数级别粘贴到来自具有富裕环境的多数类的背景图像。我们的方法很简单,可以轻松地与现有的长尾识别方法结合。我们通过广泛的实验和消融研究证明了提出的过采样方法的有效性。如果没有任何架构更改或复杂的算法,我们的方法在各种长尾分类基准上实现了最先进的性能。我们的代码将在链接上公开提供。
translated by 谷歌翻译
Building instance segmentation models that are dataefficient and can handle rare object categories is an important challenge in computer vision. Leveraging data augmentations is a promising direction towards addressing this challenge. Here, we perform a systematic study of the Copy-Paste augmentation (e.g., [13,12]) for instance segmentation where we randomly paste objects onto an image. Prior studies on Copy-Paste relied on modeling the surrounding visual context for pasting the objects. However, we find that the simple mechanism of pasting objects randomly is good enough and can provide solid gains on top of strong baselines. Furthermore, we show Copy-Paste is additive with semi-supervised methods that leverage extra data through pseudo labeling (e.g. self-training). On COCO instance segmentation, we achieve 49.1 mask AP and 57.3 box AP, an improvement of +0.6 mask AP and +1.5 box AP over the previous state-of-the-art. We further demonstrate that Copy-Paste can lead to significant improvements on the LVIS benchmark. Our baseline model outperforms the LVIS 2020 Challenge winning entry by +3.6 mask AP on rare categories.
translated by 谷歌翻译
我们提出了一种称为分配 - 均衡损失的新损失功能,用于展示长尾类分布的多标签识别问题。与传统的单标分类问题相比,由于两个重要问题,多标签识别问题通常更具挑战性,即标签的共同发生以及负标签的主导地位(当被视为多个二进制分类问题时)。分配 - 平衡损失通过对标准二进制交叉熵丢失的两个关键修改来解决这些问题:1)重新平衡考虑标签共发生造成的影响的重量的新方法,以及2)负耐受规则化以减轻负标签的过度抑制。 Pascal VOC和Coco的实验表明,使用这种新损失功能训练的模型可实现现有方法的显着性能。代码和型号可在:https://github.com/wutong16/distributionbalancedloss。
translated by 谷歌翻译
In contrast to fully supervised methods using pixel-wise mask labels, box-supervised instance segmentation takes advantage of simple box annotations, which has recently attracted increasing research attention. This paper presents a novel single-shot instance segmentation approach, namely Box2Mask, which integrates the classical level-set evolution model into deep neural network learning to achieve accurate mask prediction with only bounding box supervision. Specifically, both the input image and its deep features are employed to evolve the level-set curves implicitly, and a local consistency module based on a pixel affinity kernel is used to mine the local context and spatial relations. Two types of single-stage frameworks, i.e., CNN-based and transformer-based frameworks, are developed to empower the level-set evolution for box-supervised instance segmentation, and each framework consists of three essential components: instance-aware decoder, box-level matching assignment and level-set evolution. By minimizing the level-set energy function, the mask map of each instance can be iteratively optimized within its bounding box annotation. The experimental results on five challenging testbeds, covering general scenes, remote sensing, medical and scene text images, demonstrate the outstanding performance of our proposed Box2Mask approach for box-supervised instance segmentation. In particular, with the Swin-Transformer large backbone, our Box2Mask obtains 42.4% mask AP on COCO, which is on par with the recently developed fully mask-supervised methods. The code is available at: https://github.com/LiWentomng/boxlevelset.
translated by 谷歌翻译